-
The kinematic differentiation equations of two-dimensional isotropic harmonic charged oscillator moving in a homogeneous magnetic are obtained by using Newton’s second law. Two integrals (conserved quantities) are obtained by directly integrating the kinematic differentiation equations. The relationship between the Lagrangian and the conserved quantity is established through the Legendre transformation, thereby obtaining a Lagrangian function of the system. The Noether symmetry and Lie symmetry of the infinitesimal transformations corresponding to the conserved quantities are studied. Finally, the kinematical equations of the system are obtained.
-
Keywords:
- two-dimensional isotropic harmonic charged oscillator /
- conserved quantities /
- Noether symmetries /
- Lie symmetries
[1] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems(Beijing: Science Press) p103, p303 (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京: 科学出版社)第103页, 第303页]
[2] Dong W S, Wang B X, Fang J H 2011 Chin. Phys. B 20 010204
[3] Chen R, Xu X J 2012 Chin. Phys. B 21 094510
[4] Fang J H 2010 Chin. Phys. B 19 040301
[5] Wang X X, Han Y L, Zhang M L, Jia L Q 2013 Chin. Phys. B 22 020201
[6] Xie Y L, Jia L Q, Luo S K 2011 Chin. Phys. B 20 010203
[7] Jiang W A, Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese) [姜文安, 罗绍凯 2011 60 060201]
[8] Han Y L, Sun X T, Zhang Y Y, Jia L Q 2013 Acta Phys. Sin. 62 160201 (in Chinese) [韩月林, 孙现亭, 张耀宇, 贾利群 2013 62 160201]
[9] Fang J H, Ding N, Wang P 2007 Chin.Phys. 16 887
[10] Kaushal R S, Gupta S 2001 J. Phys. A: Math. Gen. 34 9879
[11] Kaushal R S, Parashar D, Gupta S 1997 Ann. Phys. 259 233
[12] Lou Z M 2007 Chin. Phys. 16 1182
[13] Lou Z M 2007 Acta Phys. Sin. 56 2475 (in Chinese) [楼智美 2007 56 2475]
[14] Haas F, Goedert J 1996 J. Phys. A: Math. Gen. 29 4083
[15] Lou Z M 2005 Acta Phys. Sin. 54 1969 (in Chinese) [楼智美 2005 54 1969]
[16] Lou Z M 2005 Acta Phys. Sin. 54 1460 (in Chinese) [楼智美 2005 54 1460]
[17] Prelle M J, Singer M F 1983 Trans. Amer. Math. Soc. 279 215
[18] Chandrasekar V K, Senthilvelan M, Lakshmanan M 2006 J. Phys. A: Math.Gen. 39 L69
[19] Lou Z M 2010 Acta Phys. Sin. 59 719 (in Chinese) [楼智美 2010 59 719]
[20] Ding G T 2013 Acta Phys. Sin. 62 064502 (in Chinese) [丁光涛 2013 62 064502]
[21] Ding G T 2013 Acta Phys. Sin. 62 064501 (in Chinese) [丁光涛 2013 62 064501]
[22] López G 1996 Ann. Phys. 251 363
-
[1] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems(Beijing: Science Press) p103, p303 (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京: 科学出版社)第103页, 第303页]
[2] Dong W S, Wang B X, Fang J H 2011 Chin. Phys. B 20 010204
[3] Chen R, Xu X J 2012 Chin. Phys. B 21 094510
[4] Fang J H 2010 Chin. Phys. B 19 040301
[5] Wang X X, Han Y L, Zhang M L, Jia L Q 2013 Chin. Phys. B 22 020201
[6] Xie Y L, Jia L Q, Luo S K 2011 Chin. Phys. B 20 010203
[7] Jiang W A, Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese) [姜文安, 罗绍凯 2011 60 060201]
[8] Han Y L, Sun X T, Zhang Y Y, Jia L Q 2013 Acta Phys. Sin. 62 160201 (in Chinese) [韩月林, 孙现亭, 张耀宇, 贾利群 2013 62 160201]
[9] Fang J H, Ding N, Wang P 2007 Chin.Phys. 16 887
[10] Kaushal R S, Gupta S 2001 J. Phys. A: Math. Gen. 34 9879
[11] Kaushal R S, Parashar D, Gupta S 1997 Ann. Phys. 259 233
[12] Lou Z M 2007 Chin. Phys. 16 1182
[13] Lou Z M 2007 Acta Phys. Sin. 56 2475 (in Chinese) [楼智美 2007 56 2475]
[14] Haas F, Goedert J 1996 J. Phys. A: Math. Gen. 29 4083
[15] Lou Z M 2005 Acta Phys. Sin. 54 1969 (in Chinese) [楼智美 2005 54 1969]
[16] Lou Z M 2005 Acta Phys. Sin. 54 1460 (in Chinese) [楼智美 2005 54 1460]
[17] Prelle M J, Singer M F 1983 Trans. Amer. Math. Soc. 279 215
[18] Chandrasekar V K, Senthilvelan M, Lakshmanan M 2006 J. Phys. A: Math.Gen. 39 L69
[19] Lou Z M 2010 Acta Phys. Sin. 59 719 (in Chinese) [楼智美 2010 59 719]
[20] Ding G T 2013 Acta Phys. Sin. 62 064502 (in Chinese) [丁光涛 2013 62 064502]
[21] Ding G T 2013 Acta Phys. Sin. 62 064501 (in Chinese) [丁光涛 2013 62 064501]
[22] López G 1996 Ann. Phys. 251 363
Catalog
Metrics
- Abstract views: 6987
- PDF Downloads: 666
- Cited By: 0