Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of laser to X-ray conversion features influenced by low density gold foam

Dong Yun-Song Yang Jia-Min Zhang Lu Shang Wan-Li

Citation:

Simulation of laser to X-ray conversion features influenced by low density gold foam

Dong Yun-Song, Yang Jia-Min, Zhang Lu, Shang Wan-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the laser indirect-driven inertial confinement fusion, laser light is converted into X-rays by laser-plasma interactions in the hohlraum, then at the surface of the capsule the re-emission of hohlraum inner wall would drive a symmetrical radiation source to motivate implosion. It is of great importance to improve the features of laser to X-ray conversion in the hohlraum. The influence of low density gold foam on conversion features was investigated numerically with the help of one-dimensional hydrodynamics code. The numerical simulation results show that conversion efficiency increases with the decrease in gold density under the given laser condition. In particular, it can indeed have more than 19% extra conversion efficiency relatively when solid gold is replaced by gold foam of 0.1 g/cm3 density. In addition, the percentage of M-band decreases. There is an appropriate density of gold foam, at which the movement of plasma are restrained. According to the simulation results of energy balance, we get a higher radiation energy proportion when low density gold foam is selected as the target, and this is due to the decrease of kinetic energy losses compared with solid gold. Anyway, it is an effective approach to optimize the hohlraum by using low density gold foam to improve the features of laser to X-ray conversion, and these simulations would provide a scientific basis for further attempting correlative experiments.
    • Funds: Project supported by the Key Item of Science and Technology Foundation of China Academy of Engineering Physics (Grant No. 2011A0102005).
    [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Sigel R, Eidmann K, Lavarenne F, Schmalz R F 1990 Phys. Fluids B 2 199

    [3]

    Eidmann K, Schmalz R F, Sigel R 1990 Phys. Fluids B 2 208

    [4]

    Mead W C, Stover E K 1988 Phys. Rev. A 38 5275

    [5]

    Gabl E F, Failor B H, Busch G E, Schroeder R J, Ress D, Suter J 1990 Phys. Fluids B 2 2437

    [6]

    Dahmani F 1992 Phys. Fluids B 4 1943

    [7]

    Zhang J 1990 High Power Lasers and Particle Beams 2 179 (in Chinese) [张钧 1990 强激光与粒子束 2 179]

    [8]

    Li Y S, Huo W Y, Lan K 2011 Phys. Plasmas 18 022701

    [9]

    Huser G, Courtois C, Monteil M C 2009 Phys. Plasmas 16 032703

    [10]

    Yang J M, Meng G W, Zhu T, Zhang J Y, Li J H, He X A, Yi R Q, Xu Y, Hu Z M, Ding Y N, Liu S Y, Ding Y K 2010 Phys. Plasmas 17 062702

    [11]

    Ze F, Kania D R, Langer S H, Kornblum H, Kauffman R, Kilkenny J, Campbell E M, Tietbohl G 1989 J. Appl. Phys. 66 1935

    [12]

    Nishimura H, Endo T, Shiraga H, Kato Y, Nakai S 1992 Appl. Phys. Lett. 62 1344

    [13]

    Rosen M D, Hammer J H 2005 Phys. Rev. E 72 056403

    [14]

    Young P E, Rosen M D, Hammer J H, Hsing W S, Glendinning S G, Turner R E, Kirkwood R, Schein J, Sorce C, Satcher J H, Hamza A, Reibold R A, Hibbard R, Landen O, Reighard A 2008 Phys. Rev. Lett. 101 035001

    [15]

    Zhang L, Ding Y K, Yang J M, Wu S C, Jiang S E 2011 Phys. Plasmas 18 033301

    [16]

    Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wilkens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311

    [17]

    Ramis R, Schmalz R, Meyer-ter-vehn J 1988 Comput. Phys. Commun. 49 475

    [18]

    Atzeni S, Merer-ter-vehn J 2004 The Physics of Inertial Fusion (1st Ed.) (New York: Oxford University Press) p195

    [19]

    Dewald E L, Rosen M D, Glenzer S H, Suter L J, Girard F, Jadaud J P, Schein J, Constantin C, Wagon C, Huser G, Neumayer P, Landen O L 2008 Phys. Plasmas 15 072706

    [20]

    Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defense Industry Press) p164 (in Chinese) [张钧, 常铁强 2004 激光核聚变靶物理基础 (北京: 国防工业出版社) 第164页]

  • [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Sigel R, Eidmann K, Lavarenne F, Schmalz R F 1990 Phys. Fluids B 2 199

    [3]

    Eidmann K, Schmalz R F, Sigel R 1990 Phys. Fluids B 2 208

    [4]

    Mead W C, Stover E K 1988 Phys. Rev. A 38 5275

    [5]

    Gabl E F, Failor B H, Busch G E, Schroeder R J, Ress D, Suter J 1990 Phys. Fluids B 2 2437

    [6]

    Dahmani F 1992 Phys. Fluids B 4 1943

    [7]

    Zhang J 1990 High Power Lasers and Particle Beams 2 179 (in Chinese) [张钧 1990 强激光与粒子束 2 179]

    [8]

    Li Y S, Huo W Y, Lan K 2011 Phys. Plasmas 18 022701

    [9]

    Huser G, Courtois C, Monteil M C 2009 Phys. Plasmas 16 032703

    [10]

    Yang J M, Meng G W, Zhu T, Zhang J Y, Li J H, He X A, Yi R Q, Xu Y, Hu Z M, Ding Y N, Liu S Y, Ding Y K 2010 Phys. Plasmas 17 062702

    [11]

    Ze F, Kania D R, Langer S H, Kornblum H, Kauffman R, Kilkenny J, Campbell E M, Tietbohl G 1989 J. Appl. Phys. 66 1935

    [12]

    Nishimura H, Endo T, Shiraga H, Kato Y, Nakai S 1992 Appl. Phys. Lett. 62 1344

    [13]

    Rosen M D, Hammer J H 2005 Phys. Rev. E 72 056403

    [14]

    Young P E, Rosen M D, Hammer J H, Hsing W S, Glendinning S G, Turner R E, Kirkwood R, Schein J, Sorce C, Satcher J H, Hamza A, Reibold R A, Hibbard R, Landen O, Reighard A 2008 Phys. Rev. Lett. 101 035001

    [15]

    Zhang L, Ding Y K, Yang J M, Wu S C, Jiang S E 2011 Phys. Plasmas 18 033301

    [16]

    Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wilkens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311

    [17]

    Ramis R, Schmalz R, Meyer-ter-vehn J 1988 Comput. Phys. Commun. 49 475

    [18]

    Atzeni S, Merer-ter-vehn J 2004 The Physics of Inertial Fusion (1st Ed.) (New York: Oxford University Press) p195

    [19]

    Dewald E L, Rosen M D, Glenzer S H, Suter L J, Girard F, Jadaud J P, Schein J, Constantin C, Wagon C, Huser G, Neumayer P, Landen O L 2008 Phys. Plasmas 15 072706

    [20]

    Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defense Industry Press) p164 (in Chinese) [张钧, 常铁强 2004 激光核聚变靶物理基础 (北京: 国防工业出版社) 第164页]

  • [1] Li Na, Bai Ya, Liu Peng. Frequency control of the broadband ultrashort terahertz source generated from the laser induced plasma by two-color pluses. Acta Physica Sinica, 2016, 65(11): 110701. doi: 10.7498/aps.65.110701
    [2] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Simulation of Z-pinch Al plasma radiation and correction with considering superposition effect. Acta Physica Sinica, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [3] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Separating the Z-pinch plasma X-ray radiation and attaining the electron temperature. Acta Physica Sinica, 2014, 63(9): 095201. doi: 10.7498/aps.63.095201
    [4] Wang Chen, An Hong-Hai, Wang Wei, Fang Zhi-Heng, Jia Guo, Meng Xiang-Fu, Sun Jin-Ren, Liu Zheng-Kun, Fu Shao-Jun, Qiao Xiu-Mei, Zheng Wu-Di, Wang Shi-Ji. Diagnoses of Au plasma with soft X-ray double frequency grating interference technique. Acta Physica Sinica, 2014, 63(12): 125210. doi: 10.7498/aps.63.125210
    [5] Guo Kai-Min, Gao Xun, Hao Zuo-Qiang, Lu Yi, Sun Chang-Kai, Lin Jing-Quan. The fluorescence feature of plasma induced by femtosecond laser pulses in air. Acta Physica Sinica, 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [6] Ye Fan, Xue Fei-Biao, Guo Cun, Li Zheng-Hong, Yang Jian-Lun, Xu Rong-Kun, Zhang Fa-Qiang, Jin Yong-Jie. Utilization of convex crystal spectrograph to obtain monochromatic X-ray images of Z-pinch plasmas. Acta Physica Sinica, 2008, 57(3): 1792-1795. doi: 10.7498/aps.57.1792
    [7] Zhang Ji-Yan, Yang Jia-Min, Xu Yan, Yang Guo-Hong, Yan Jun, Meng Guang-Wei, Ding Yao-Nan, Wang Yan. Absorption experiments on radiatively heated Al plasma. Acta Physica Sinica, 2008, 57(2): 985-989. doi: 10.7498/aps.57.985
    [8] Zou Xiao-Bing, Wang Xin-Xin, Zhang Gui-Xin, Han Min, Luo Cheng-Mu. Study of soft X-ray energy spectra from gas-puff Z-pinch plasma. Acta Physica Sinica, 2006, 55(3): 1289-1294. doi: 10.7498/aps.55.1289
    [9] Huang Xian-Shan, Xie Shuang-Yuan, Yang Ya-Ping. Spontaneous emission from a Λ-type atom in anisotropic photonic crystal. Acta Physica Sinica, 2006, 55(2): 696-703. doi: 10.7498/aps.55.696
    [10] Hao Zuo-Qiang, Zhang Jie, Zhang Zhe, Xi Ting-Ting, Zheng Zhi-Yuan, Yuan Xiao-Hui, Wang Zhao-Hua. Third harmonic generation in plasma channels in air induced by intense femtosecond laser pulses. Acta Physica Sinica, 2005, 54(7): 3173-3177. doi: 10.7498/aps.54.3173
    [11] Wang Rui-Rong, Wang Wei, Wang Chen, Dong Jia-Qin, Sun Jin-Ren, Wan Bing-Gen. Spectral characterization of double-driven x-ray laser plasmas. Acta Physica Sinica, 2003, 52(3): 556-560. doi: 10.7498/aps.52.556
    [12] . Acta Physica Sinica, 2002, 51(3): 590-595. doi: 10.7498/aps.51.590
    [13] CHEN BO, ZHENG ZHI-JIAN, DING YONG-KUN, LI SAN-WEI, WANG YAO-MEI. DETERMINATION OF ELECTRON TEMPERATURE IN LASER-PRODUCED PLASMAS BY ISOELECTRONIC XRAY SPECTROSCOPY. Acta Physica Sinica, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
    [14] FENG JIAN, WANG JI-SUO, GAO YUN-FENG, ZHAN MING-SHENG. INFLUENCE OF NONLINEARITIES OF BOTH THE FIELD AND THE INTENSITY-DEPENDENT ATOM-FIELD COUPLING ON THE EMISSION SPECTRUM OF AN ATOM IN A CAVITY. Acta Physica Sinica, 2001, 50(7): 1279-1283. doi: 10.7498/aps.50.1279
    [15] YANG GUO-HONG, ZHANG JI-YAN, ZHANG BAO-HAN, ZHOU YU-QING, LI JUN. ANALYSIS OF FINE STRUCTURE OF X-RAY SPECTRA FROM LASER-IRRADIATED GOLD DOT. Acta Physica Sinica, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
    [16] MA HONG-LIANG, SUN KE-XU, YI RONG-QING, CUI YAN-LI, TANG DAO-YUAN, ZHENG ZHI-JIAN. STUDY OF SOFT X-RAY CONVERSION EFFICIENCY FROM FREQUENCY-TRIPLED 0.35μm LASER-IRRADIATED DIFFERENT MATERIAL PLANAR TARGETS. Acta Physica Sinica, 1996, 45(10): 1688-1693. doi: 10.7498/aps.45.1688
    [17] Guo Qi-Zhi, Shen Wen-Da, Zhu Shi-Tong. . Acta Physica Sinica, 1995, 44(3): 396-400. doi: 10.7498/aps.44.396
    [18] PEI WEN-BING, CHANG TIE-QIANG, ZHANG JUN. INVESTIGATION ON NON-EQUILIBRIUM X-RAY EMISSION SPECTRA FROM LASER PRODUCED PLASMAS. Acta Physica Sinica, 1995, 44(11): 1766-1775. doi: 10.7498/aps.44.1766
    [19] TANG YONG-JIAN, ZHENG ZHI-JIAN, DING YAO-NAN, FENG JIE, CHEN XIAO-FENG. RADIATION TEMPERATURE OF LASER-PLASMAS EXPERI-MENTAL INVESTIGATION. Acta Physica Sinica, 1990, 39(6): 75-79. doi: 10.7498/aps.39.75
    [20] WANG XIAO-FANG, A. PACHTMAN, XU ZHI-ZHAN, CHEN SHI-SHENG, LI YAO-LING, QIAN AI-DI. LASER PLASMA X-RAY EMISSION FROM 5? TO 200?. Acta Physica Sinica, 1990, 39(6): 80-84. doi: 10.7498/aps.39.80
Metrics
  • Abstract views:  6414
  • PDF Downloads:  584
  • Cited By: 0
Publishing process
  • Received Date:  14 August 2012
  • Accepted Date:  10 November 2012
  • Published Online:  05 April 2013

/

返回文章
返回
Baidu
map