-
In this paper, a novel three-dimensional autonomous chaotic system is reported. The dynamic properties of the new system are investigated via Lyapunov dimension, numerical simulation, Poincare diagrams, Lyapunov exponent spectrum and bifurcation diagrams. The different dynamic behaviors of the system are analyzed especially when each system parameter is changed. Finally, the circuit of this new chaotic system is designed and realized by Multisim software. The simulation results confirm that the chaotic system is different from the exisiting chaotic systems and is a novel chaotic system.
-
Keywords:
- chaotic system /
- Lyapunov exponent spectrum /
- Poincaré diagrams /
- circuit realization
[1] Lorenz E N 1963 J. Atmos. Sci. 20 130
[2] Lorenz E N 1993 The Essence of Chaos (Washington:University of Washington Press)
[3] Chen G R, Ueta T 1999 Int. J. Bifur. Chaos 9 1465
[4] Celikovsky S, Chen G R 2002 Int. J. Bifur. Chaos 12 1789
[5] Lü J H, Chen G R 2002 Int. J. Bifur. Chaos 12 659
[6] Lü J H, Chen G R, Cheng D Z 2002 Int. J. Bifur. Chaos 12 2917
[7] Chen G R, Lü J H 2003 Dynamics of the Lorenz System Family: Analysis,Control and Synchronization (Beijing: Science Press)p150 (in Chinese)[陈关荣,吕金虎 2003 Lorenz系统族的动力学分析、控制与同步(北京:科学出版社)第150页]
[8] Liu C X, Liu L, Liu K 2004 Chaos Soliton Fract. 22 1031
[9] Qi G Y, Du S, Chen G R 2005 Chaos Soliton Fract. 23 1671
[10] Zhao P D, Lj J, Zhang X D 2008 Acta Phys. Sin. 57 2791(in Chinese)[赵品栋,张晓丹 2008 57 2791]
[11] Hu G S 2009 Acta Phys. Sin. 58 8139 (in Chinese)[胡国四 2009 58 8139]
[12] Tang L R, Li J, Fan B 2009 Acta Phys. Sin. 58 1446 (in Chinese)[唐良瑞,李静,樊冰 2009 58 1446]
[13] Li C B,Wang D C 2009 Acta Phys. Sin. 58 764 (in Chinese)[李春彪,王德纯 2009 58 764]
[14] Li C B, Wang H K, Chen S 2010 Acta Phys. Sin. 59 783 (in Chinese)[李春彪,王翰康,陈谡 2010 59 783]
[15] Liu Z H 2006 Fundamentals and Applications of Chaotic Dynamics (Beijing: High Educatioin Press)p18 (in Chinese)[刘宗华 2006 混沌动力学基础及其应用(北京:高等教育出版社)第18页]
-
[1] Lorenz E N 1963 J. Atmos. Sci. 20 130
[2] Lorenz E N 1993 The Essence of Chaos (Washington:University of Washington Press)
[3] Chen G R, Ueta T 1999 Int. J. Bifur. Chaos 9 1465
[4] Celikovsky S, Chen G R 2002 Int. J. Bifur. Chaos 12 1789
[5] Lü J H, Chen G R 2002 Int. J. Bifur. Chaos 12 659
[6] Lü J H, Chen G R, Cheng D Z 2002 Int. J. Bifur. Chaos 12 2917
[7] Chen G R, Lü J H 2003 Dynamics of the Lorenz System Family: Analysis,Control and Synchronization (Beijing: Science Press)p150 (in Chinese)[陈关荣,吕金虎 2003 Lorenz系统族的动力学分析、控制与同步(北京:科学出版社)第150页]
[8] Liu C X, Liu L, Liu K 2004 Chaos Soliton Fract. 22 1031
[9] Qi G Y, Du S, Chen G R 2005 Chaos Soliton Fract. 23 1671
[10] Zhao P D, Lj J, Zhang X D 2008 Acta Phys. Sin. 57 2791(in Chinese)[赵品栋,张晓丹 2008 57 2791]
[11] Hu G S 2009 Acta Phys. Sin. 58 8139 (in Chinese)[胡国四 2009 58 8139]
[12] Tang L R, Li J, Fan B 2009 Acta Phys. Sin. 58 1446 (in Chinese)[唐良瑞,李静,樊冰 2009 58 1446]
[13] Li C B,Wang D C 2009 Acta Phys. Sin. 58 764 (in Chinese)[李春彪,王德纯 2009 58 764]
[14] Li C B, Wang H K, Chen S 2010 Acta Phys. Sin. 59 783 (in Chinese)[李春彪,王翰康,陈谡 2010 59 783]
[15] Liu Z H 2006 Fundamentals and Applications of Chaotic Dynamics (Beijing: High Educatioin Press)p18 (in Chinese)[刘宗华 2006 混沌动力学基础及其应用(北京:高等教育出版社)第18页]
Catalog
Metrics
- Abstract views: 8659
- PDF Downloads: 809
- Cited By: 0