-
The Br model is considered. The influence of the defect, defined by failure of the diffusion effect, on dynamics of spiral wave is investigated by introducing in to the system some defects. These defects are uniformly distributed. It was found numerically that these defects can lead to the reduction of the excitability of medium and the wave speed. When the number of defects is large enough, these defects can induce the meandering or the breakage of an originally stable spiral wave. On the other hands, the defects can yet cause an unstable spiral wave to become a rigidly rotating or meandering spiral wave. The phenomenon that Doppler effect causes unstable spiral wave to break up into co-existing states of spatiotemporal chaos and small spiral waves is observed for the first time. The physical mechanism of these phenomena are briefly discussed.
-
Keywords:
- excitable medium /
- spiral wave /
- defect
[1] [1]Ouyang Q 2000 Pattern Formation in Reaction-Diffusion Systems (Shanghai: Shang Scientific and Technological Education Publishing House) p73—78 (in Chinese)[欧阳颀 2000 反应扩散系统中螺旋波的失稳 (上海:上海科技教育出版社) 第73—78页]
[2] [2]Jakubith S, Rotermund H H, Engel W, Oertzen A V, Erth G 1990 Phys. Rev. Lett. 65 859
[3] [3]Henry H 2004 Phys. Rev. E 70 026204
[4] [4]Nash M P, Panfilov A V 2004 Prog. Biophys. Molec. Biol. 85 501
[5] [5]Zhang H, Hu B, Hu G 2003 Phys. Rev. E 68 026134
[6] [6]Ma J, Jin W Y, Yi M, Li Y L 2008 Acta Phys. Sin. 57 2832 (in Chinese)[马军、靳伍银、易鸣、李廷龙 2008 57 2832]
[7] [7]Ma J, Jin W Y, Li Y L, Chen Y 2007 Acta Phys. Sin. 56 2456 (in Chinese)[马军、靳伍银、李廷龙、陈勇 2007 56 2456]
[8] [8]Yin X Z, Liu Y 2008 Acta Phys. Sin. 57 6844 (in Chinese)[尹小舟、刘勇 2008 57 6844]
[9] [9]Gan Z N, Ma J, Zhang G Y, Chen Y 2008 Acta Phys. Sin. 57 5400 (in Chinese)[甘正宁、马军、张国勇、陈勇 2008 57 5400]
[10] ]Steinbock O, Muller S C 1993 Phys. Rev. E 47 1506
[11] ]Munuzuri A P, Perez-Munuzuri V, Perez-Villar V 1998 Phys. Rev. E 58 R2689
[12] ]Li B W, Zhang H, Ying H P, Hu G 2009 Phys. Rev. E 79 026220
[13] ]Ten Tusscher K H W J, Panfilov A V 2003 Phys. Rev. E 68 062902
[14] ]Shajahan T K, Sinha S, Pandit R 2007 Phys. Rev. E 75 011929
[15] ]Dai Y, Tang G N 2009 Acta Phys. Sin. 58 1491 (in Chinese)[戴瑜、唐国宁 2009 58 1491]
[16] ]Br M and Eiswirth M 1993 Phys. Rev. E 48 R1635
-
[1] [1]Ouyang Q 2000 Pattern Formation in Reaction-Diffusion Systems (Shanghai: Shang Scientific and Technological Education Publishing House) p73—78 (in Chinese)[欧阳颀 2000 反应扩散系统中螺旋波的失稳 (上海:上海科技教育出版社) 第73—78页]
[2] [2]Jakubith S, Rotermund H H, Engel W, Oertzen A V, Erth G 1990 Phys. Rev. Lett. 65 859
[3] [3]Henry H 2004 Phys. Rev. E 70 026204
[4] [4]Nash M P, Panfilov A V 2004 Prog. Biophys. Molec. Biol. 85 501
[5] [5]Zhang H, Hu B, Hu G 2003 Phys. Rev. E 68 026134
[6] [6]Ma J, Jin W Y, Yi M, Li Y L 2008 Acta Phys. Sin. 57 2832 (in Chinese)[马军、靳伍银、易鸣、李廷龙 2008 57 2832]
[7] [7]Ma J, Jin W Y, Li Y L, Chen Y 2007 Acta Phys. Sin. 56 2456 (in Chinese)[马军、靳伍银、李廷龙、陈勇 2007 56 2456]
[8] [8]Yin X Z, Liu Y 2008 Acta Phys. Sin. 57 6844 (in Chinese)[尹小舟、刘勇 2008 57 6844]
[9] [9]Gan Z N, Ma J, Zhang G Y, Chen Y 2008 Acta Phys. Sin. 57 5400 (in Chinese)[甘正宁、马军、张国勇、陈勇 2008 57 5400]
[10] ]Steinbock O, Muller S C 1993 Phys. Rev. E 47 1506
[11] ]Munuzuri A P, Perez-Munuzuri V, Perez-Villar V 1998 Phys. Rev. E 58 R2689
[12] ]Li B W, Zhang H, Ying H P, Hu G 2009 Phys. Rev. E 79 026220
[13] ]Ten Tusscher K H W J, Panfilov A V 2003 Phys. Rev. E 68 062902
[14] ]Shajahan T K, Sinha S, Pandit R 2007 Phys. Rev. E 75 011929
[15] ]Dai Y, Tang G N 2009 Acta Phys. Sin. 58 1491 (in Chinese)[戴瑜、唐国宁 2009 58 1491]
[16] ]Br M and Eiswirth M 1993 Phys. Rev. E 48 R1635
Catalog
Metrics
- Abstract views: 8546
- PDF Downloads: 1021
- Cited By: 0