[1] |
Li Qing-Du, Guo Jian-Li. Algorithm for calculating the Lyapunov exponents of switching system and its application. Acta Physica Sinica,
2014, 63(10): 100501.
doi: 10.7498/aps.63.100501
|
[2] |
Xu Hong-Mei, Jin Yong-Gao, Jin Jing-Xuan. Time irreversibility analysis of converter based on symbolic dynamics. Acta Physica Sinica,
2014, 63(13): 130502.
doi: 10.7498/aps.63.130502
|
[3] |
Huang Xiao-Lin, Huo Cheng-Yu, Si Jun-Feng, Liu Hong-Xing. Application of equiprobable symbolization sample entropy to electroencephalography analysis. Acta Physica Sinica,
2014, 63(10): 100503.
doi: 10.7498/aps.63.100503
|
[4] |
Wang Guang-Yi, Yuan Fang. Cascade chaos and its dynamic characteristics. Acta Physica Sinica,
2013, 62(2): 020506.
doi: 10.7498/aps.62.020506
|
[5] |
Wu Hao, Hou Wei, Wang Wen-Xiang, Yan Peng-Cheng. Try to use Lyapunov exponent to discuss the abrupt climate change and its precursory signals. Acta Physica Sinica,
2013, 62(12): 129204.
doi: 10.7498/aps.62.129204
|
[6] |
Chen Chong, Ding Jiong, Zhang Hong, Chen Zhuo. Study of an integrate-and-discharge model with symbolic dynamics. Acta Physica Sinica,
2013, 62(14): 140502.
doi: 10.7498/aps.62.140502
|
[7] |
Zang Hong-Yan, Fan Xiu-Bin, Min Le-Quan, Han Dan-Dan. Research of Lyapunov exponent of S-boxes. Acta Physica Sinica,
2012, 61(20): 200508.
doi: 10.7498/aps.61.200508
|
[8] |
Wang Fu-Lai. A new pseudo-random number generator and application to digital secure communication scheme based on compound symbolic chaos. Acta Physica Sinica,
2011, 60(11): 110517.
doi: 10.7498/aps.60.110517
|
[9] |
Song Ai-Ling, Huang Xiao-Lin, Si Jun-Feng, Ning Xin-Bao. Optimum parameters setting in symbolic dynamics of heart rate variability analysis. Acta Physica Sinica,
2011, 60(2): 020509.
doi: 10.7498/aps.60.020509
|
[10] |
Yang Ru, Zhang Bo, Zhao Shou-Bai, Lao Yu-Jin. Arithmetic complexity of discrete map of converter based on symbol time series. Acta Physica Sinica,
2010, 59(6): 3756-3762.
doi: 10.7498/aps.59.3756
|
[11] |
Yu Si-Yao, Guo Shu-Xu, Gao Feng-Li. Calculation of the Lyapunov exponent for low frequency noise in semiconductor laser and chaos indentification. Acta Physica Sinica,
2009, 58(8): 5214-5217.
doi: 10.7498/aps.58.5214
|
[12] |
Zhang Xiao-Dan, Liu Xiang, Zhao Pin-Dong. Methods for calculating the main-axis Lyapunov exponents of a type of chaotic systems with delay. Acta Physica Sinica,
2009, 58(7): 4415-4420.
doi: 10.7498/aps.58.4415
|
[13] |
He Si-Hua, Yang Shao-Qing, Shi Ai-Guo, Li Tian-Wei. Detection of ship targets on the sea surface based on Lyapunov exponents of image block. Acta Physica Sinica,
2009, 58(2): 794-801.
doi: 10.7498/aps.58.794
|
[14] |
Yang Yong-Feng, Wu Ya-Feng, Ren Xing-Min, Qin Wei-Yang, Zhi Xi-Zhe, Qiu Yan. The largest Lyapunov prediction method for the end issue of empirical mode decomposition. Acta Physica Sinica,
2009, 58(6): 3742-3746.
doi: 10.7498/aps.58.3742
|
[15] |
Zhang Yong, Guan Wei. Predication of multivariable chaotic time series based on maximal Lyapunov exponent. Acta Physica Sinica,
2009, 58(2): 756-763.
doi: 10.7498/aps.58.756
|
[16] |
Shen Min-Fen, Lin Lan-Xin, Li Xiao-Yan, Chang Chun-Qi. Initial condition estimate of coupled map lattices system based on symbolic dynamics. Acta Physica Sinica,
2009, 58(5): 2921-2929.
doi: 10.7498/aps.58.2921
|
[17] |
Liu Xiao-Feng, Yu Wen-Li. A symbolic dynamics approach to the complexity analysis of event-related potentials. Acta Physica Sinica,
2008, 57(4): 2587-2594.
doi: 10.7498/aps.57.2587
|
[18] |
Wang Kai, Pei Wen-Jiang, Xia Hai-Shan, He Zhen-Ya. Initial condition estimation from coupled map lattices based on symbolic vector dynamics. Acta Physica Sinica,
2007, 56(7): 3766-3770.
doi: 10.7498/aps.56.3766
|
[19] |
Lu Shan, Wang Hai-Yan. Calculation of the maximal Lyapunov exponent from multivariate data. Acta Physica Sinica,
2006, 55(2): 572-576.
doi: 10.7498/aps.55.572
|
[20] |
Xiao Fang-Hong, Yan Gui-Rong, Han Yu-Hang. A symbolic dynamics approach for the complexity analysis of chaotic pseudo-random sequences. Acta Physica Sinica,
2004, 53(9): 2876-2881.
doi: 10.7498/aps.53.2876
|