[1] |
Meng Xian-Wen. Structural influence of electric field direction on water bridges in one-dimensional disjoint nanochannels. Acta Physica Sinica,
2024, 73(9): 093102.
doi: 10.7498/aps.73.20240027
|
[2] |
Cao Zhen, Hao Da-Peng, Tang Gang, Xun Zhi-Peng, Xia Hui. Influence of cluster shaped defects on fracture process of fiber bundle. Acta Physica Sinica,
2021, 70(20): 204602.
doi: 10.7498/aps.70.20210310
|
[3] |
Zhang Xing-Yu. Effects of current density on fracture behaviors for micron-sized crystalline silicon electrodes. Acta Physica Sinica,
2020, 69(24): 248201.
doi: 10.7498/aps.69.20200915
|
[4] |
Xu Ting-Dong, Liu Zhen-Jun, Yu Hong-Yao, Wang Kai. Measurement uncertainty of metallic ductility in tensile tests: intermediate temperature embrittlement and strain rate embrittlement. Acta Physica Sinica,
2014, 63(22): 228101.
doi: 10.7498/aps.63.228101
|
[5] |
Wu Fei-Fei, Yu Peng, Bian Xi-Lei, Tan Jun, Wang Jian-Guo, Wang Gang. Correlation between fracture mechanism and fracture toughness in metallic glasses. Acta Physica Sinica,
2014, 63(5): 058101.
doi: 10.7498/aps.63.058101
|
[6] |
Lu Min, Xu Wei-Bing, Liu Wei-Qing, Hou Chun-Ju, Liu Zhi-Yong. An atomistic simulation on melting and breaking relaxation characteristics of Ag nanorods at high temperature. Acta Physica Sinica,
2010, 59(9): 6377-6383.
doi: 10.7498/aps.59.6377
|
[7] |
Hu Zhi-Hua, Lian Fa-Zeng, Zhu Ming-Gang, Li Wei. The microstructure and impact toughness of sintered Nd-Fe-B magnets. Acta Physica Sinica,
2008, 57(2): 1202-1206.
doi: 10.7498/aps.57.1202
|
[8] |
Li Shu-Chen, Cheng Yu-Min, Li Shu-Cai. Meshless manifold method for dynamic fracture mechanics. Acta Physica Sinica,
2006, 55(9): 4760-4766.
doi: 10.7498/aps.55.4760
|
[9] |
Xu Chun-Hua, Liu Chun-Xiang, Guo Hong-Lian, Li Zhao-Lin, Jiang Yu-Qiang, Zhang Dao-Zhong, Yuan Ming. Photosensitive breaking of fluorescent labeled microtubules and its mechanism. Acta Physica Sinica,
2006, 55(1): 206-210.
doi: 10.7498/aps.55.206
|
[10] |
Wei Zhi-Yong, Zang Li-Hui, Li Ming, Fan Wo, Xu Yu-Jie. Fragmentation in DNA double-strand breaks. Acta Physica Sinica,
2005, 54(10): 4955-4960.
doi: 10.7498/aps.54.4955
|
[11] |
Zhu Bo, Cai Xun, Wang Cheng-Guo, Cai Hua-Su. Studies on the relationship between acoustic emission characteristics and fractu re toughness of materials. Acta Physica Sinica,
2003, 52(8): 1960-1964.
doi: 10.7498/aps.52.1960
|
[12] |
XING XIU-SAN. A STATISTICAL THEORY OF TRANSGRANULAR BRITTLE FRACTURE FOR METALS. Acta Physica Sinica,
1999, 48(1): 107-113.
doi: 10.7498/aps.48.107
|
[13] |
XING XIU-SAN. STATISTICAL THEORY OF DELAYED FRACTURE. Acta Physica Sinica,
1990, 39(10): 1602-1613.
doi: 10.7498/aps.39.1602
|
[14] |
KONG QING-PING, DAI YONG. A STUDY OF CREEP RUPTURE IN COPPER BY MEASUREMENTS OF INTERNAL FRICTION. Acta Physica Sinica,
1987, 36(7): 855-861.
doi: 10.7498/aps.36.855
|
[15] |
ZHANG HONG-TU, ZHE XIAO-LI. THEORY OF INCLUSION AND APPLICATIONS IN THE STUDY OF FRACTURE. Acta Physica Sinica,
1981, 30(6): 761-774.
doi: 10.7498/aps.30.761
|
[16] |
XING XIU-SAN. A STATISTICAL THEORY OF BRITTLE FRACTURE. Acta Physica Sinica,
1980, 29(6): 718-731.
doi: 10.7498/aps.29.718
|
[17] |
FAN TIAN-YOU, LIANG ZHEN-YA. A POSSIBLE MECHANISM OF THE GROWTH OF GRAIN-BOUNDARY CRACK AND AN ESTIMATION OF CREEP RUPTURE TIME. Acta Physica Sinica,
1978, 27(3): 269-275.
doi: 10.7498/aps.27.269
|
[18] |
. . Acta Physica Sinica,
1975, 24(3): 168-173.
doi: 10.7498/aps.24.168
|
[19] |
HSIN HSIU-SAN. A STATISTICAL THEORY OF BRITTLE FRACTURE. Acta Physica Sinica,
1966, 22(4): 487-497.
doi: 10.7498/aps.22.487
|
[20] |
LIU SHU-I. MECHANICAL CONDITIONS FOR ISOTHERMAL RUPTURE OF METALS. Acta Physica Sinica,
1953, 9(4): 275-293.
doi: 10.7498/aps.9.275
|