搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属铅的宽区多相物态方程

方俊 赵艳红 高兴誉 张其黎 王越超 孙博 刘海风 宋海峰

引用本文:
Citation:

金属铅的宽区多相物态方程

方俊, 赵艳红, 高兴誉, 张其黎, 王越超, 孙博, 刘海风, 宋海峰

A wide-range multiphase equation of state for lead

FANG Jun, ZHAO Yanhong, GAO Xingyu, ZHANG Qili, WANG Yuechao, SUN Bo, LIU Haifeng, SONG Haifeng
cstr: 32037.14.aps.74.20250569
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文从Helmholtz自由能出发构建了铅的宽区多相物态方程, 覆盖从常温到10 MK、从常压到107 GPa的温压范围, 计算了冲击雨贡纽线、300 K等温线、熔化线及温稠密过渡区热力学物性, 并与实验值、铅已有的宽区物态方程数据库SESAME-3200以及第一性原理模拟结果进行了对比分析. 一方面, 本文的模型能较好地再现各类实验数据; 另一方面, 在温稠密过渡区, 本文的模型获得了扩展的第一性原理分子动力学模拟结果的验证, 相比SESAME-3200更符合第一性原理的模拟结果. 本文数据集可在https://www.doi.org/10.57760/sciencedb.j00213.00166中访问获取.
    We present a multi-phase equation of state (EOS) for lead (Pb, Z = 82) in wide ranges of densities and temperatures: $ {11}{.34}\;{\text{g}}/{\text{c}}{{\text{m}}^3} < \rho < 80\; {\text{g}}/{\text{c}}{{\text{m}}^3}{,} $ $ 300\;{\mathrm{K}} < T < 10\;{\mathrm{MK}}. $ The EOS model is based on a standard decomposition of the Helmholtz free energy that is regarded as a function of the specific volume and the temperature into cold term, ion-thermal term, and electronic excitation term. The cold term models both the compression and the expansion states; the ion-thermal term introduces the Debye approximation and the melting entropy; the electronic excitation term employs the Thomas-Fermi-Kirzhnits (TFK) model. The thermodynamic properties of the warm-dense lead are calculated using the extended first-principles molecular dynamics (ext-FPMD) method, with the density reaching five times that of ambient density and the temperature up to 0.4 MK. Our EOS model is used to predict the principle Hugoniot, the room-temperature isotherm, the melting curve, and the thermodynamic properties in the warm-dense region. A systematic comparison with the experimental data, the SESAME-3200 table, and the ext-FPMD calculations is made and shows that our EOS model is consistent with not only the various experimental data, but also the ext-FPMD calculations, indicating some superiority over the SESAME-3200 table in the warm-dense region. The datasets presented in this paper, including the tabular EOS consisting of internal energy and pressure at the different densities and temperatures, are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00166.
      通信作者: 赵艳红, zhao_yanhong@iapcm.ac.cn
    • 基金项目: 计算物理全国重点实验室基金(批准号: 6142A05230302)、国家自然科学基金(批准号: U23A20537, U2230401)和科学挑战专题(批准号: TZ2025013)资助的课题.
      Corresponding author: ZHAO Yanhong, zhao_yanhong@iapcm.ac.cn
    • Funds: Project supported by the Foundation of the National Key Laboratory of Computational Physics (Grant No. 6142A05230302), the National Natural Science Foundation of China (Grant Nos. U23A20537, U2230401), and the Science Challenge Project, China (Grant No. TZ2025013).
    [1]

    徐锡申, 张万箱 1986 实用物态方程理论导引(北京: 科学出版社)第1, 191页

    Xu X S, Zhang W X 1986 Introduction to Practical Equation of States (Beijing: Scientific Press) pp1, 191

    [2]

    Holzapfel W B, Hartwig M, Sievers W 2001 J. Phys. Chem. Ref. Data 30 515Google Scholar

    [3]

    Lyon S P, Johnson J D 1992 Los Alamos Technical Report No. LA-UR-92-3407

    [4]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 3059Google Scholar

    [5]

    Liu H F, Song H F, Zhang Q L, Zhang G M, Zhao Y H 2016 Matter Radiat. Extrem. 1 123Google Scholar

    [6]

    Zhao Y H, Wang L F, Zhang Q L, Zhang L, Song H Z, Gao X Y, Sun B, Liu H F, Song H F 2025 Chin. Phys. B 34 036401Google Scholar

    [7]

    汤文辉, 徐彬彬, 冉宪文, 徐志宏 2017 66 030505Google Scholar

    Tang W H, Xu B B, Ran X W, Xu Z H 2017 Acta Phys. Sin. 66 030505Google Scholar

    [8]

    Graziani F, Desjarlais M P, Redmer R, Trickey S B (Eds.) 2014 Frontiers and Challenges in Warm Dense Matter (Cham: Springer International Publishing) p123

    [9]

    刘千锐 2023 博士学位论文(北京: 北京大学)

    Liu Q R 2023 Ph. D. Dissertation (Beijing: Peking University

    [10]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 B864Google Scholar

    [11]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 A1133Google Scholar

    [12]

    Martin R M 2004 Electronic Structure: Basic Theory and Practical Methods (Cambridge: Cambridge University Press) p119

    [13]

    Cytter Y, Rabani E, Neuhauser D, Baer R 2018 Phys. Rev. B 97 115207Google Scholar

    [14]

    Militzer B, González-Cataldo F, Zhang S, Driver K P, Soubiran F 2021 Phys. Rev. E 103 013203Google Scholar

    [15]

    Zhang S, Wang H W, Kang W, Zhang P, He X T 2016 Phys. Plasmas 23 042707Google Scholar

    [16]

    Blanchet A, Clérouin J, Torrent M, Soubiran F 2022 Comput. Phys. Commun. 271 108215Google Scholar

    [17]

    White A J, Collins L A 2020 Phys. Rev. Lett. 125 055002Google Scholar

    [18]

    Liu Q R, Chen M H 2022 Phys. Rev. B 106 125132Google Scholar

    [19]

    Wilson B G, Johnson D D, Alam A 2011 High Energy Density Phys. 7 61Google Scholar

    [20]

    Starrett C E 2018 Phys. Rev. E 97 053205Google Scholar

    [21]

    Walsh J M, Rice M H, Mcqueen R G, Yarger F L 1957 Phys. Rev. 108 196Google Scholar

    [22]

    Al'tshuler L V, Krupnikov K K, Brazhnik M I 1958 Zh. Eksp. Teor. Fiz. 34 886 (in Russian

    [23]

    Al'tshuler L V, Kormer S B, Bakanova A A, Trunin R F 1960 Zh. Eksp. Teor. Fiz. 38 790 (in Russian

    [24]

    McQueen R G, Marsh S P 1960 J. Appl. Phys. 31 1253Google Scholar

    [25]

    Al'tshuler L V, Bakanova A A, Bushman A V, Dudoladov I P, Zubarev V N 1977 Zh. Eksp. Teor. Fiz. 73 1866 (in Russian

    [26]

    Marsh S P (Ed.) 1980 LASL Shock Hugoniot Data (Berkeley: Univ. California Press) p100

    [27]

    Avrorin E N, Vodolaga B K, Voloshin N P, Kuropatenko V F, Kovalenko G V, Simonenko V A, Chernodolyuk B T 1986 Pis'ma Zh. Eksp. Teor. Fiz. 43 241 (in Russian

    [28]

    Mitchell A C, Nellis W J, Moriarty J A, Heinle R A, Holmes N C, Tipton R E, Repp G W 1991 J. Appl. Phys. 69 2981Google Scholar

    [29]

    Trunin R F, Il'kaeva L A, Podurets M A, Popov L V, Pechenkin B V, Prokhorov L V, Sevast'yanov A G, Khrustalev V V 1994 Teplofiz. Vys. Temp. 32 692 (in Russian

    [30]

    Trunin R F 1994 Usp. Fiz. Nauk 164 1215 (in Russian

    [31]

    Mao H K, Wu Y, Shu J F 1990 Solid State Commun. 74 1027Google Scholar

    [32]

    Partouche-Sebban D, Pélissier J L 2005 J. Appl. Phys. 97 043521Google Scholar

    [33]

    Dewaele A, Mezouar M, Guignot N, Loubeyre P 2007 Phys. Rev. B 76 144106Google Scholar

    [34]

    Smirnov N A 2021 J. Phys.: Condens. Matter 33 035402Google Scholar

    [35]

    Zhang S, Morales M A 2020 AIP Conf. Proc. 2272 090004

    [36]

    Yang X, Zeng X G, Chen H Y, Wang Y T, He L, Wang F 2019 J. Alloy. Comp. 808 151702Google Scholar

    [37]

    Strässle Th, Klotz S, Kunc K, Pomjakushin V, White J S 2014 Phys. Rev. B 90 014101

    [38]

    Kozyrev N V, Gordeev V V 2022 Metals 12 16

    [39]

    Schulte O, Holzapfel W B 1995 Phys. Rev. B 52 12636Google Scholar

    [40]

    Morita K, Sobolev V, Flad M 2007 J. Nucl. Mater. 362 227Google Scholar

    [41]

    Sobolev V P, Schuurmans P, Benamati G 2008 J. Nucl. Mater. 376 358Google Scholar

    [42]

    Song P, Cai L C 2010 Physica B 405 1509Google Scholar

    [43]

    Gao X Y, Mo Z Y, Fang J, Song H F, Wang H 2017 Comput. Phys. Commun. 211 54Google Scholar

    [44]

    Zhou Y Z, Wang H, Liu Y, Gao X Y, Song H F 2018 Phys. Rev. E 97 033305Google Scholar

    [45]

    Fang J, Gao X Y, Song H F 2019 Commun. Comput. Phys. 26 1196Google Scholar

    [46]

    Blanchet A, Torrent M, Clérouin J 2020 Phys. Plasmas 27 122706Google Scholar

    [47]

    Sjostrom T, Crockett S, Rudin S 2016 Phys. Rev. B 94 144101Google Scholar

    [48]

    Kadatskiy M A 2019 High Energy Density Phys. 33 100700Google Scholar

    [49]

    Liu X, Zhang X H, Gao C, Zhang S, Wang C, Li D F, Zhang P, Kang W, Zhang W Y, He X T 2021 Phys. Rev. B 103 174111Google Scholar

    [50]

    Schwarz K 2003 J. Solid State Chem. 176 319Google Scholar

    [51]

    Benedict L X, Driver K P, Hamel S, Militzer B, Qi T, Correa A A, Saul A, Schwegler E 2014 Phys. Rev. B 89 224109Google Scholar

    [52]

    Mattsson A E 2012 Sandia Technical Report No. SAND2012-7389

    [53]

    Eliezer S, Ricci R A (Eds.) 1991 High Pressure Equations of State: Theory and Applications (Amsterdam: North Holland) p249

    [54]

    Johnson J D 1991 Int. J. High Press. Res. 6 277Google Scholar

    [55]

    Benedict L X, Ogitsu T, Trave A, Wu C J, Sterne P A, Schwegler E 2009 Phys. Rev. B 79 064106Google Scholar

    [56]

    Wilson B, Sonnad V, Sterne P, Isaace W 2006 J. Quant. Spectrosc. Ra. 99 658Google Scholar

  • 图 1  面心立方铅的冷压线(压强-体积) 22个价电子的PAW势计算结果与WIEN2k全势结果的对比

    Fig. 1.  Cold pressure results of face-centered-cubic lead calculated by CESSP with the 22 electron PAW potential, compared with full-potential results from WIEN2k.

    图 2  冲击雨贡纽线(压强-压缩比)理论计算值, 以及与SESAME-3200和实验数据的对比

    Fig. 2.  Principle Hugoniot predicted by the theoretical model in this work, compared with the SESAME-3200 table and the experimental data.

    图 3  300 K等温压缩线(体积比-压强)理论计算值与SESAME-3200[3]和实验数据[31]的对比

    Fig. 3.  Room-temperature isotherm predicted by the theoretical model in this work, compared with the SESAME-3200 table[3] and the experimental data[31].

    图 4  熔化线及雨贡纽线(温度-压强)理论计算值与SESAME-3200和实验数据的对比

    Fig. 4.  Melting curve predicted by the theoretical model in this work, compared with the experimental data. The T-P Hugoniot curves from our model and the SESAME-3200 table are also given to illustrate the difference.

    图 5  温稠密过渡区物性(压强-压缩比)理论模型与SESAME-3200[3]和第一性原理ext-FPMD模拟的对比

    Fig. 5.  Thermodynamic properties of the warm-dense lead predicted by the theoretical model in this work, compared with the SESAME-3200 table[3] and the ext-FPMD calculations.

    表 1  Ext-FP方法与标准DFT方法下铅的计算结果比较

    Table 1.  Comparison of results from the ext-FP method and the DFT method.

    电子温度/MK Ext-FP方法 标准DFT方法
    Ncut P/GPa ΔP/% Nocc P/GPa
    0.1 40 134.654 –0.01 100 134.670
    0.2 60 414.783 –0.03 200 414.890
    0.3 80 791.144 –0.23 350 792.977
    下载: 导出CSV

    表 2  不同温度密度条件下最低价态(铅的5s态)的占据数

    Table 2.  Occupation numbers of the lowest energy valence state (5s state of lead) at the different temperatures and densities.

    ρ02ρ03ρ04ρ05ρ0
    T = 0.05 MK1.000001.000001.000001.000001.00000
    T = 0.1 MK1.000001.000001.000001.000001.00000
    T = 0.2 MK0.999730.999770.999810.999840.99988
    T = 0.3 MK0.994920.995760.996400.997010.99746
    T = 0.4 MK0.977040.980740.983640.986120.98821
    T = 0.5 MK0.942430.951550.958810.965040.96917
    下载: 导出CSV
    Baidu
  • [1]

    徐锡申, 张万箱 1986 实用物态方程理论导引(北京: 科学出版社)第1, 191页

    Xu X S, Zhang W X 1986 Introduction to Practical Equation of States (Beijing: Scientific Press) pp1, 191

    [2]

    Holzapfel W B, Hartwig M, Sievers W 2001 J. Phys. Chem. Ref. Data 30 515Google Scholar

    [3]

    Lyon S P, Johnson J D 1992 Los Alamos Technical Report No. LA-UR-92-3407

    [4]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 3059Google Scholar

    [5]

    Liu H F, Song H F, Zhang Q L, Zhang G M, Zhao Y H 2016 Matter Radiat. Extrem. 1 123Google Scholar

    [6]

    Zhao Y H, Wang L F, Zhang Q L, Zhang L, Song H Z, Gao X Y, Sun B, Liu H F, Song H F 2025 Chin. Phys. B 34 036401Google Scholar

    [7]

    汤文辉, 徐彬彬, 冉宪文, 徐志宏 2017 66 030505Google Scholar

    Tang W H, Xu B B, Ran X W, Xu Z H 2017 Acta Phys. Sin. 66 030505Google Scholar

    [8]

    Graziani F, Desjarlais M P, Redmer R, Trickey S B (Eds.) 2014 Frontiers and Challenges in Warm Dense Matter (Cham: Springer International Publishing) p123

    [9]

    刘千锐 2023 博士学位论文(北京: 北京大学)

    Liu Q R 2023 Ph. D. Dissertation (Beijing: Peking University

    [10]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 B864Google Scholar

    [11]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 A1133Google Scholar

    [12]

    Martin R M 2004 Electronic Structure: Basic Theory and Practical Methods (Cambridge: Cambridge University Press) p119

    [13]

    Cytter Y, Rabani E, Neuhauser D, Baer R 2018 Phys. Rev. B 97 115207Google Scholar

    [14]

    Militzer B, González-Cataldo F, Zhang S, Driver K P, Soubiran F 2021 Phys. Rev. E 103 013203Google Scholar

    [15]

    Zhang S, Wang H W, Kang W, Zhang P, He X T 2016 Phys. Plasmas 23 042707Google Scholar

    [16]

    Blanchet A, Clérouin J, Torrent M, Soubiran F 2022 Comput. Phys. Commun. 271 108215Google Scholar

    [17]

    White A J, Collins L A 2020 Phys. Rev. Lett. 125 055002Google Scholar

    [18]

    Liu Q R, Chen M H 2022 Phys. Rev. B 106 125132Google Scholar

    [19]

    Wilson B G, Johnson D D, Alam A 2011 High Energy Density Phys. 7 61Google Scholar

    [20]

    Starrett C E 2018 Phys. Rev. E 97 053205Google Scholar

    [21]

    Walsh J M, Rice M H, Mcqueen R G, Yarger F L 1957 Phys. Rev. 108 196Google Scholar

    [22]

    Al'tshuler L V, Krupnikov K K, Brazhnik M I 1958 Zh. Eksp. Teor. Fiz. 34 886 (in Russian

    [23]

    Al'tshuler L V, Kormer S B, Bakanova A A, Trunin R F 1960 Zh. Eksp. Teor. Fiz. 38 790 (in Russian

    [24]

    McQueen R G, Marsh S P 1960 J. Appl. Phys. 31 1253Google Scholar

    [25]

    Al'tshuler L V, Bakanova A A, Bushman A V, Dudoladov I P, Zubarev V N 1977 Zh. Eksp. Teor. Fiz. 73 1866 (in Russian

    [26]

    Marsh S P (Ed.) 1980 LASL Shock Hugoniot Data (Berkeley: Univ. California Press) p100

    [27]

    Avrorin E N, Vodolaga B K, Voloshin N P, Kuropatenko V F, Kovalenko G V, Simonenko V A, Chernodolyuk B T 1986 Pis'ma Zh. Eksp. Teor. Fiz. 43 241 (in Russian

    [28]

    Mitchell A C, Nellis W J, Moriarty J A, Heinle R A, Holmes N C, Tipton R E, Repp G W 1991 J. Appl. Phys. 69 2981Google Scholar

    [29]

    Trunin R F, Il'kaeva L A, Podurets M A, Popov L V, Pechenkin B V, Prokhorov L V, Sevast'yanov A G, Khrustalev V V 1994 Teplofiz. Vys. Temp. 32 692 (in Russian

    [30]

    Trunin R F 1994 Usp. Fiz. Nauk 164 1215 (in Russian

    [31]

    Mao H K, Wu Y, Shu J F 1990 Solid State Commun. 74 1027Google Scholar

    [32]

    Partouche-Sebban D, Pélissier J L 2005 J. Appl. Phys. 97 043521Google Scholar

    [33]

    Dewaele A, Mezouar M, Guignot N, Loubeyre P 2007 Phys. Rev. B 76 144106Google Scholar

    [34]

    Smirnov N A 2021 J. Phys.: Condens. Matter 33 035402Google Scholar

    [35]

    Zhang S, Morales M A 2020 AIP Conf. Proc. 2272 090004

    [36]

    Yang X, Zeng X G, Chen H Y, Wang Y T, He L, Wang F 2019 J. Alloy. Comp. 808 151702Google Scholar

    [37]

    Strässle Th, Klotz S, Kunc K, Pomjakushin V, White J S 2014 Phys. Rev. B 90 014101

    [38]

    Kozyrev N V, Gordeev V V 2022 Metals 12 16

    [39]

    Schulte O, Holzapfel W B 1995 Phys. Rev. B 52 12636Google Scholar

    [40]

    Morita K, Sobolev V, Flad M 2007 J. Nucl. Mater. 362 227Google Scholar

    [41]

    Sobolev V P, Schuurmans P, Benamati G 2008 J. Nucl. Mater. 376 358Google Scholar

    [42]

    Song P, Cai L C 2010 Physica B 405 1509Google Scholar

    [43]

    Gao X Y, Mo Z Y, Fang J, Song H F, Wang H 2017 Comput. Phys. Commun. 211 54Google Scholar

    [44]

    Zhou Y Z, Wang H, Liu Y, Gao X Y, Song H F 2018 Phys. Rev. E 97 033305Google Scholar

    [45]

    Fang J, Gao X Y, Song H F 2019 Commun. Comput. Phys. 26 1196Google Scholar

    [46]

    Blanchet A, Torrent M, Clérouin J 2020 Phys. Plasmas 27 122706Google Scholar

    [47]

    Sjostrom T, Crockett S, Rudin S 2016 Phys. Rev. B 94 144101Google Scholar

    [48]

    Kadatskiy M A 2019 High Energy Density Phys. 33 100700Google Scholar

    [49]

    Liu X, Zhang X H, Gao C, Zhang S, Wang C, Li D F, Zhang P, Kang W, Zhang W Y, He X T 2021 Phys. Rev. B 103 174111Google Scholar

    [50]

    Schwarz K 2003 J. Solid State Chem. 176 319Google Scholar

    [51]

    Benedict L X, Driver K P, Hamel S, Militzer B, Qi T, Correa A A, Saul A, Schwegler E 2014 Phys. Rev. B 89 224109Google Scholar

    [52]

    Mattsson A E 2012 Sandia Technical Report No. SAND2012-7389

    [53]

    Eliezer S, Ricci R A (Eds.) 1991 High Pressure Equations of State: Theory and Applications (Amsterdam: North Holland) p249

    [54]

    Johnson J D 1991 Int. J. High Press. Res. 6 277Google Scholar

    [55]

    Benedict L X, Ogitsu T, Trave A, Wu C J, Sterne P A, Schwegler E 2009 Phys. Rev. B 79 064106Google Scholar

    [56]

    Wilson B, Sonnad V, Sterne P, Isaace W 2006 J. Quant. Spectrosc. Ra. 99 658Google Scholar

  • [1] 肖凡, 王小伟, 王力, 王家灿, 孙旭, 郑志刚, 范晓慧, 张栋文, 赵增秀. 温稠密物质交流电导率单发测量的时间精度提升与分析.  , 2025, 74(9): 095202. doi: 10.7498/aps.74.20250135
    [2] 张志宇, 赵阳, 青波, 张继彦, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质离化分布实验方法研究.  , 2024, 73(1): 015201. doi: 10.7498/aps.73.20231216
    [3] 张志宇, 赵阳, 青波, 张继彦, 马建毅, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质电子结构密度效应研究.  , 2023, 72(24): 245201. doi: 10.7498/aps.72.20231215
    [4] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程.  , 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [5] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民. 温稠密物质中不同价态离子分布对X-射线弹性散射光谱计算的影响.  , 2021, 70(7): 073102. doi: 10.7498/aps.70.20201483
    [6] 王天浩, 王坤, 张阅, 姜林村. 温稠密铝等离子体物态方程及其电离平衡研究.  , 2020, 69(9): 099101. doi: 10.7498/aps.69.20191826
    [7] 马桂存, 张其黎, 宋红州, 李琼, 朱希睿, 孟续军. 温稠密物质物态方程的理论研究.  , 2017, 66(3): 036401. doi: 10.7498/aps.66.036401
    [8] 范小兵, 陈俊祥, 向士凯. 基于比热的完全物态方程.  , 2016, 65(23): 236401. doi: 10.7498/aps.65.236401
    [9] 于继东, 李平, 王文强, 吴强. 金属铝固液气完全物态方程研究.  , 2014, 63(11): 116401. doi: 10.7498/aps.63.116401
    [10] 圣宗强, 舒良萍, 孟影, 胡继刚, 钱建发. 有效液滴模型对超铅区结团放射性的研究.  , 2014, 63(16): 162302. doi: 10.7498/aps.63.162302
    [11] 彭小娟, 刘福生. 液相及固/液混合相区金属物态方程Grover模型存在的问题及修正.  , 2012, 61(18): 186201. doi: 10.7498/aps.61.186201
    [12] 李英华, 常敬臻, 李雪梅, 俞宇颖, 戴程达, 张林. 铋的固相及液相多相状态方程研究.  , 2012, 61(20): 206203. doi: 10.7498/aps.61.206203
    [13] 朱希睿, 孟续军. 改进的含温有界原子模型对金的电子物态方程的计算.  , 2011, 60(9): 093103. doi: 10.7498/aps.60.093103
    [14] 顾云军, 郑君, 陈志云, 陈其峰, 蔡灵仓. H2+He流体混合物在部分离解区的物态方程.  , 2010, 59(7): 4508-4513. doi: 10.7498/aps.59.4508
    [15] 赵艳红, 刘海风, 张弓木. 基于统计物理的爆轰产物物态方程研究.  , 2007, 56(8): 4791-4797. doi: 10.7498/aps.56.4791
    [16] 田春玲, 蔡灵仓, 顾云军, 经福谦, 陈志云. 用多次冲击压缩方法研究稠密氢氦等摩尔混合气体的物态方程.  , 2007, 56(7): 4180-4186. doi: 10.7498/aps.56.4180
    [17] 侯 永, 袁建民. 第一性原理对金的高压相变和零温物态方程的计算.  , 2007, 56(6): 3458-3463. doi: 10.7498/aps.56.3458
    [18] 张 颖, 陈其峰, 顾云军, 蔡灵仓, 卢铁城. 部分电离稠密氦等离子体物态方程的自洽变分计算.  , 2007, 56(3): 1318-1324. doi: 10.7498/aps.56.1318
    [19] 田杨萌, 王彩霞, 姜 明, 程新路, 杨向东. 惰性物质等离子体物态方程研究.  , 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [20] 李晓杰. 热膨胀型固体物态方程.  , 2002, 51(5): 1098-1102. doi: 10.7498/aps.51.1098
计量
  • 文章访问数:  454
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-28
  • 修回日期:  2025-06-03
  • 上网日期:  2025-06-18
  • 刊出日期:  2025-08-05

/

返回文章
返回
Baidu
map