搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sc2O3掺杂对稀土难熔钇盐阴极热发射性能的影响

漆世锴 王兴起 李云 张琪 王宇

引用本文:
Citation:

Sc2O3掺杂对稀土难熔钇盐阴极热发射性能的影响

漆世锴, 王兴起, 李云, 张琪, 王宇

Effect of Sc2O3 doping on thermal emission properties of rare-earth refractory yttrium salt cathode

QI Shikai, WANG Xingqi, LI Yun, ZHANG Qi, WANG Yu
cstr: 32037.14.aps.74.20250520
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 为了提高磁控管用稀土难熔钇盐阴极的热发射能力, 探索Sc2O3掺杂对稀土难熔钇盐阴极热发射性能的影响机理, 采用Sc2O3掺杂稀土难熔钇盐来制备阴极, 并测试该阴极的热发射性能. 热发射测试结果表明, Sc2O3掺杂能够有效地提高稀土难熔钇盐阴极的热发射能力. 其中, 3% Sc2O3 (3%为质量分数, 后同)掺杂能够最大程度地提高阴极的热发射能力, 当阳压为300 V, 温度为1600 ℃时, 3% Sc2O3掺杂阴极可以支取3.85 A/cm2的热发射电流. 而在相同条件下, 未掺杂Sc2O3阴极, 即稀土难熔钇盐阴极仅可以支取1.66 A/cm2的热发射电流, 3% Sc2O3掺杂能够将该阴极的热发射能力提升132%. 寿命试验结果表明, 当负载电流为0.5 A/cm2, 温度为1500 ℃时, 3% Sc2O3掺杂阴极的试验寿命已经超过4200 h, 且没有明显的衰减迹象. 最后, 利用扫描电子显微镜、能谱仪、X射线衍射仪、扫描俄歇纳米探针等对阴极进行详细分析. 结果表明, 热发射测试过程中, 一方面, 掺杂的Sc2O3和Y2Hf2O7发生了置换固溶反应, 生成了ScxY(2–x)Hf2O[7+(3/2)x]固溶体, 造成Y2Hf2O7晶格畸变, 导致晶格处于高能状态, 降低了阴极表面的逸出功, 与此同时, Sc2O3中的Sc置换掉了Y2Hf2O7晶胞中Y, 被置换出来的Y以金属单质形式存在, 改善了阴极表面的导电性. 另一方面, ScxY(2–x)Hf2O[7+(3/2)x]固溶体中会产生一定数量的Vo2+氧空位和自由电子, 也使得阴极表面的导电性能得到改善. 最终, 在这两方面的共同作用下, 阴极的热发射能力得到显著的提高.
    To improve the thermionic emission performance of the rare-earth refractory yttrium salt cathode used in the magnetron, the influence of Sc2O3 doping on its thermionic emission properties is investigated. Cathodes are fabricated by incorporating different weight percentages of Sc2O3 into the rare-earth refractory yttrium salt matrix, and their thermionic emission properties are systematically evaluated. The experimental findings reveal that the doping of Sc2O3 significantly enhances the thermionic emission capability of the cathode. Notably, Sc2O3 with a doping concentration of 3% has the most significant improvement in emission performance. The 3% Sc2O3-doped cathode can achieve a thermionic emission current density of 3.85 A/cm2 under an anode voltage of 300 V at 1600 ℃. In contrast, under the same conditions, the undoped cathode provides a current density of only 1.66 A/cm2, indicating a 132% increase in thermionic emission efficiency when doped with 3% Sc2O3. By using the Richardson line method coupled with data-fitting algorithms, the absolute zero work functions for undoped and Sc2O3-doped cathodes (3%, 7%, and 11%) are determined to be 1.42, 0.93, 0.98, and 1.11 eV, respectively. The lifespan assessment indicates that at 1400℃ the cathode doped with 3% Sc2O3 remains stable for over 4200 h under an initial load of 0.5 A/cm2 without significant degradation. Finally, those cathodes are analyzed by the XRD, SEM, EDS, AES respectively. The analyses show that during thermionic emission testing, the Sc2O3 and Y2Hf2O7 undergo substitutional solid solution reactions, forming the ScxY(2–x)Hf2O[7+(3/2)x] solid solution. This process causes lattice distortion in the Y2Hf2O7, which makes it in a high-energy state, thus reducing the work function on the cathode surface. At the same time, Sc from Sc2O3 displaces Y in the Y2Hf2O7 unit cells, with the displaced Y existing in the form of metal, which enhances the electrical conductivity of the cathode surface. Additionally, the ScxY(2–x)Hf2O[7+(3/2)x] solid solution generates a substantial number of Vo2+ oxygen vacancies and free electrons, thereby further augmenting surface conductivity. All in all, these mechanisms contribute to significantly improving the thermionic emission capability of the cathode.
      通信作者: 漆世锴, kaishiqi@126.com
    • 基金项目: 国家自然科学基金(批准号: 62161014)和材料表面工程江西省重点实验室基金(批准号: 2024SSY05072)资助的课题.
      Corresponding author: QI Shikai, kaishiqi@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62161014) and the Key Laboratory of Material Surface Engineering of Jiangxi Province, China (Grant No. 2024SSY05072).
    [1]

    Vyas S K, Verma R K, Maurya S 2016 Frequenz 70 455Google Scholar

    [2]

    Patibandla A, Dobbidi P, Tiwari T 2023 24th International Vacuum Electronics Conference (IVEC) Chengdu, China, April 25–28, 2023 p1

    [3]

    Lim H, Jeong D H, Lee M, Ro S C 2017 IEEE Trans. Plasma. Sci. 45 2734Google Scholar

    [4]

    Shang J H, Yang X Y, Wang Z Y, Hu M Y, Han C L, Zhang J X 2020 IEEE Trans. Elec. Dev. 67 2580Google Scholar

    [5]

    Timofeev N A, Sukhomlinov V S, Georges Z 2021 IEEE Trans. Plasma Sci. 49 2387Google Scholar

    [6]

    Bergner A, Scharf F H, Kühn G, Ruhrmann C, Hoebing T, Awakowicz P, Mentel J 2014 Plasma Sources Sci. T. 23 054005Google Scholar

    [7]

    Makarov A P, Zemchikhin E M 2019 IEEE Proceedings of IVEC Busan, Korea (South), April 28–May 1, 2019 p112

    [8]

    Djubua B C, Polivnikova O V 2003 Appl. Surf. Sci. 215 242Google Scholar

    [9]

    Djubua B C, Kultashev O K, Kultashev A P, Polivnikova O V 2012 IEEE Proceedings of IVESC Monterey, CA, USA, April 24–26, 2012 p185

    [10]

    Hu M W, Wang X X, Qi S K 2019 IEEE Trans. Elec. Dev. 66 3592Google Scholar

    [11]

    Wang X X, Meng M F, Zhang R Q, Li Y, Zhang Q 2023 IEEE Proceedings of IVEC Chengdu, China, April 25-28, 2023 p1145

    [12]

    Wang X X, Liu Y W, Luo J R, Zhan Q L, Li Y, Zhang Q 2014 IEEE Trans. Elec. Dev. 61 605Google Scholar

    [13]

    Zhang R Q, Wang X X, Ren F, Yin S Y 2024 IEEE Trans. Elec. Dev. 71 2078Google Scholar

    [14]

    Zhang R Q, Ding S X, Wang X X, Ren F, Yin S Y 2025 IEEE Trans. Elec. Dev. 72 1427Google Scholar

    [15]

    Mujan N S, Zhou Q F, Liu X T, John B, Matthew J B 2022 IEEE Trans. Elec. Dev. 69 3513Google Scholar

    [16]

    Wang J S, Dong L R, Liu W, Yang F 2017 Sci. China Technol. Sc. 60 1439Google Scholar

    [17]

    Yang F, Wang J S, Liu W, Liu X, Zhou M L 2013 Appl Surface Sci. 270 746Google Scholar

    [18]

    Yang F, Wang J S, Liu W, Zhou M L 2015 Mater. Chem. Phys. 149–150 288Google Scholar

    [19]

    Wang X Q, Wang X X, Luo J R, Qi S K, Li Y 2023 IEEE Trans. Elec. Dev. 70 2883Google Scholar

    [20]

    漆世锴, 王小霞, 罗积润, 赵青兰, 李云 2016 65 057901Google Scholar

    Qi S K, Wang X X, Luo J R, Zhao Q L, Li Y 2016 Acta Phys. Sin. 65 057901Google Scholar

    [21]

    Sakharov K A, Simonenko E P, Simonenko N P 2018 Ceram. Int. 44 7647Google Scholar

    [22]

    周宏明, 易丹青 2008 无机材料学报 23 247Google Scholar

    Zhou H M, Yi D Q 2008 J. Inorg. Mater. 23 247Google Scholar

    [23]

    袁志谦, 周增林, 李艳, 何学良, 陈文帅, 张婉婷 2024 材料导报 39 24100155

    Yuan Z Q, Zhou Z L, Li Y, He X L, Chen W S, Zhang W T 2024 Materials Reports 39 24100155

    [24]

    Prashar G, Vasudev H, Thakur L 2023 Prot. Met. Phys. Chem. Surf. 59 461Google Scholar

    [25]

    Wang J S, Chen M D, Li C Z, Chen L Y, Yu Y S, Wang Y H, Liu B, Jing Q S 2021 Surf. Coat. Technol. 428 127879Google Scholar

    [26]

    Guo Y Q, Guo L, Liu K Y, Qiu S Y, Guo H B, Xu H B 2024 J. Mater. Sci. Technol. 182 33Google Scholar

  • 图 1  阴极的剖面结构示意图

    Fig. 1.  Cross-sectional structure schematic of the cathode.

    图 2  不同质量分数Sc2O3掺杂稀土难熔钇盐阴极的伏安特性曲线 (a) 未掺杂Sc2O3; (b) 3% Sc2O3掺杂; (c) 7% Sc2O3掺杂; (d) 11% Sc2O3掺杂

    Fig. 2.  I -V curves of the Sc2O3 doped rare-earth refractory yttrium salt cathodes: (a) Undoped Sc2O3; (b) 3% Sc2O3; (c) 7% Sc2O3; (d) 11% Sc2O3.

    图 3  3% Sc2O3掺杂阴极实验寿命曲线

    Fig. 3.  Lifetime curve of the 3% Sc2O3 doped cathode.

    图 4  阴极的lg j -U 1/2曲线 (a) 未掺杂Sc2O3; (b) 3% Sc2O3掺杂

    Fig. 4.  lg j -U 1/2 curves of the cathode: (a) Undoped Sc2O3; (b) 3% Sc2O3.

    图 5  阴极的Richardson直线 (a) 未掺杂Sc2O3; (b) 3% Sc2O3掺杂

    Fig. 5.  Richardson line of the cathode: (a) Undoped Sc2O3; (b) 3% Sc2O3.

    图 6  未掺杂Sc2O3阴极活性物质表面SEM及XRD图 (a) SEM形貌; (b) XRD谱

    Fig. 6.  SEM and XRD of the active material’s surface for the undoped Sc2O3: (a) SEM; (b) XRD.

    图 7  阴极表面SEM形貌图 (a) 未掺杂Sc2O3; (b) 3% Sc2O3掺杂; (c) 7% Sc2O3掺杂; (d) 11% Sc2O3掺杂

    Fig. 7.  SEM morphology of the cathode’s surface: (a) Undoped Sc2O3; (b) 3% Sc2O3; (c) 7% Sc2O3; (d) 11% Sc2O3.

    图 8  阴极顶表面AES谱图

    Fig. 8.  AES spectrum of the topmost layer on the cathode’s surface.

    图 9  元素含量与氩离子蚀刻深度之间的关系

    Fig. 9.  Elements content as a function of the depth using argon ion etching method.

    图 10  晶胞结构示意图 (a) 未掺杂Sc2O3; (b) 掺杂Sc2O3

    Fig. 10.  Schematic diagram of unit cell structure: (a) Undoped Sc2O3; (b) doped Sc2O3.

    表 1  未掺杂、3%、7%、11% Sc2O3掺杂阴极表面元素成分及其原子百分比

    Table 1.  Element contents of the undoped, 3%, 7%, 11% Sc2O3 doped cathode and their atomic percentage.

    Cathode type Element type/%
    Sc Y Hf O
    Undoped Sc2O3 0 19.88 25.23
    54.89
    3% Sc2O3 doped 0 22.03 26.35
    51.62
    7% Sc2O3 doped 6.37 16.99 18.25 58.39
    11% Sc2O3 doped 15.10 12.81 18.98 53.11
    下载: 导出CSV

    表 2  O, Y, Hf, Sc, C元素原子百分比与氩离子蚀刻深度的关系

    Table 2.  O, Y, Hf, Sc, C atomic percentage as a function of the depth using argon ion etching method

    Depth/nm O/% Y/% Hf/% Sc/% C/%
    0 31.1 22.3 15.6 3.8 27.2
    5 22.5 33.5 20.0 3.2 20.8
    10 31.4 30.0 17.4 2.5 18.7
    20 34.2 24.7 19.0 3.2 18.9
    50 37.6 21.4 17.7 4.3 19.0
    100 46.3 17.5 14.8 4.8 16.6
    200 54.9 15.8 14.4 4.7 10.2
    300 52.8 15.0 14.2 5.2 12.8
    下载: 导出CSV
    Baidu
  • [1]

    Vyas S K, Verma R K, Maurya S 2016 Frequenz 70 455Google Scholar

    [2]

    Patibandla A, Dobbidi P, Tiwari T 2023 24th International Vacuum Electronics Conference (IVEC) Chengdu, China, April 25–28, 2023 p1

    [3]

    Lim H, Jeong D H, Lee M, Ro S C 2017 IEEE Trans. Plasma. Sci. 45 2734Google Scholar

    [4]

    Shang J H, Yang X Y, Wang Z Y, Hu M Y, Han C L, Zhang J X 2020 IEEE Trans. Elec. Dev. 67 2580Google Scholar

    [5]

    Timofeev N A, Sukhomlinov V S, Georges Z 2021 IEEE Trans. Plasma Sci. 49 2387Google Scholar

    [6]

    Bergner A, Scharf F H, Kühn G, Ruhrmann C, Hoebing T, Awakowicz P, Mentel J 2014 Plasma Sources Sci. T. 23 054005Google Scholar

    [7]

    Makarov A P, Zemchikhin E M 2019 IEEE Proceedings of IVEC Busan, Korea (South), April 28–May 1, 2019 p112

    [8]

    Djubua B C, Polivnikova O V 2003 Appl. Surf. Sci. 215 242Google Scholar

    [9]

    Djubua B C, Kultashev O K, Kultashev A P, Polivnikova O V 2012 IEEE Proceedings of IVESC Monterey, CA, USA, April 24–26, 2012 p185

    [10]

    Hu M W, Wang X X, Qi S K 2019 IEEE Trans. Elec. Dev. 66 3592Google Scholar

    [11]

    Wang X X, Meng M F, Zhang R Q, Li Y, Zhang Q 2023 IEEE Proceedings of IVEC Chengdu, China, April 25-28, 2023 p1145

    [12]

    Wang X X, Liu Y W, Luo J R, Zhan Q L, Li Y, Zhang Q 2014 IEEE Trans. Elec. Dev. 61 605Google Scholar

    [13]

    Zhang R Q, Wang X X, Ren F, Yin S Y 2024 IEEE Trans. Elec. Dev. 71 2078Google Scholar

    [14]

    Zhang R Q, Ding S X, Wang X X, Ren F, Yin S Y 2025 IEEE Trans. Elec. Dev. 72 1427Google Scholar

    [15]

    Mujan N S, Zhou Q F, Liu X T, John B, Matthew J B 2022 IEEE Trans. Elec. Dev. 69 3513Google Scholar

    [16]

    Wang J S, Dong L R, Liu W, Yang F 2017 Sci. China Technol. Sc. 60 1439Google Scholar

    [17]

    Yang F, Wang J S, Liu W, Liu X, Zhou M L 2013 Appl Surface Sci. 270 746Google Scholar

    [18]

    Yang F, Wang J S, Liu W, Zhou M L 2015 Mater. Chem. Phys. 149–150 288Google Scholar

    [19]

    Wang X Q, Wang X X, Luo J R, Qi S K, Li Y 2023 IEEE Trans. Elec. Dev. 70 2883Google Scholar

    [20]

    漆世锴, 王小霞, 罗积润, 赵青兰, 李云 2016 65 057901Google Scholar

    Qi S K, Wang X X, Luo J R, Zhao Q L, Li Y 2016 Acta Phys. Sin. 65 057901Google Scholar

    [21]

    Sakharov K A, Simonenko E P, Simonenko N P 2018 Ceram. Int. 44 7647Google Scholar

    [22]

    周宏明, 易丹青 2008 无机材料学报 23 247Google Scholar

    Zhou H M, Yi D Q 2008 J. Inorg. Mater. 23 247Google Scholar

    [23]

    袁志谦, 周增林, 李艳, 何学良, 陈文帅, 张婉婷 2024 材料导报 39 24100155

    Yuan Z Q, Zhou Z L, Li Y, He X L, Chen W S, Zhang W T 2024 Materials Reports 39 24100155

    [24]

    Prashar G, Vasudev H, Thakur L 2023 Prot. Met. Phys. Chem. Surf. 59 461Google Scholar

    [25]

    Wang J S, Chen M D, Li C Z, Chen L Y, Yu Y S, Wang Y H, Liu B, Jing Q S 2021 Surf. Coat. Technol. 428 127879Google Scholar

    [26]

    Guo Y Q, Guo L, Liu K Y, Qiu S Y, Guo H B, Xu H B 2024 J. Mater. Sci. Technol. 182 33Google Scholar

  • [1] 王瑞刚, 刘泽朋, 香莲, 孙勇. 氧化钪(Sc2O3)的热漫散射强度解析.  , 2024, 73(6): 063401. doi: 10.7498/aps.73.20231241
    [2] 张红艳, 包黎红, 潮洛蒙, 赵凤岐, 刘子忠. 多功能多元稀土六硼化物La1–x Srx B6光吸收及热电子发射机理.  , 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [3] 漆世锴, 王小霞, 王兴起, 胡明玮, 刘理, 曾伟. 大功率磁控管用新型Y2Hf2O7陶瓷阴极研究.  , 2020, 69(3): 037901. doi: 10.7498/aps.69.20191496
    [4] 李凡, 张忻, 张久兴. [Ca24Al28O64]4+(4e)电子化合物的直接合成及热发射性能.  , 2019, 68(20): 206801. doi: 10.7498/aps.68.20190070
    [5] 杨温渊, 董烨, 董志伟. 新型全腔输出半透明阴极相对论磁控管的理论和数值研究.  , 2016, 65(24): 248401. doi: 10.7498/aps.65.248401
    [6] 漆世锴, 王小霞, 罗积润, 赵青兰, 李云. 磁控管用新型Y2O3-Gd2O3-HfO2浸渍W基直热式阴极研究.  , 2016, 65(5): 057901. doi: 10.7498/aps.65.057901
    [7] 史迪夫, 王弘刚, 李伟, 钱宝良. 扇形腔旭日型磁控管结构的理论分析与数字模拟.  , 2013, 62(15): 151101. doi: 10.7498/aps.62.151101
    [8] 岳松, 张兆传, 高冬平. 阻抗匹配条件下磁控管的注入锁频.  , 2013, 62(17): 178401. doi: 10.7498/aps.62.178401
    [9] 李伟, 刘永贵, 杨建华. 同轴辐射相对论磁控管的功率合成研究.  , 2012, 61(3): 038401. doi: 10.7498/aps.61.038401
    [10] 李伟, 刘永贵. 类磁控管结构的理论分析.  , 2012, 61(2): 021103. doi: 10.7498/aps.61.021103
    [11] 李伟, 刘永贵. 2工作模式下可调谐同轴辐射相对论磁控管的模拟研究.  , 2011, 60(12): 128403. doi: 10.7498/aps.60.128403
    [12] 乔建良, 常本康, 钱芸生, 王晓晖, 李飙, 徐源. GaN真空面电子源光电发射机理研究.  , 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [13] 李世帅, 张仲, 黄金昭, 冯秀鹏, 刘如喜. In掺杂ZnO薄膜的制备及其白光发射机理.  , 2011, 60(9): 097405. doi: 10.7498/aps.60.097405
    [14] 孙伟峰, 李美成, 赵连城. 低维半导体异质结中的量子相干红外发射机理理论研究.  , 2010, 59(9): 6185-6192. doi: 10.7498/aps.59.6185
    [15] 刘莹, 倪晓武. 乙醇-水团簇分子形成激基缔合物及荧光发射机理研究.  , 2009, 58(5): 3572-3577. doi: 10.7498/aps.58.3572
    [16] 张琳丽, 徐卓, 冯玉军, 盛兆玄. 负脉冲激励下PLZST电子发射特征及发射机理研究.  , 2009, 58(6): 4249-4253. doi: 10.7498/aps.58.4249
    [17] 吴春霞, 周 明, 冯程程, 袁 润, 李 刚, 马伟伟, 蔡 兰. 微纳跨尺度ZnO结构的紫外发射机理研究.  , 2008, 57(6): 3887-3891. doi: 10.7498/aps.57.3887
    [18] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽.  , 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [19] 何煜, 郭文康, 邵其鋆, 须平. 自由电弧热发射阴极的物理模型.  , 2000, 49(3): 487-491. doi: 10.7498/aps.49.487
    [20] 朱昂如, 吴西林. 用能化电子效应考察二次离子的发射机理.  , 1984, 33(10): 1475-1479. doi: 10.7498/aps.33.1475
计量
  • 文章访问数:  414
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-21
  • 修回日期:  2025-05-19
  • 上网日期:  2025-05-29
  • 刊出日期:  2025-08-05

/

返回文章
返回
Baidu
map