搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化钪(Sc2O3)的热漫散射强度解析

王瑞刚 刘泽朋 香莲 孙勇

引用本文:
Citation:

氧化钪(Sc2O3)的热漫散射强度解析

王瑞刚, 刘泽朋, 香莲, 孙勇

Analysis of thermal diffuse scattering intensity of scandium oxide (Sc2O3)

Wang Rui-Gang, Liu Ze-Peng, Xiang-Lian, Sun Yong
PDF
HTML
导出引用
  • 热漫散射分析在凝聚态物理和材料科学研究中具有巨大潜力与实用性. 氧化钪(Sc2O3)独特的物理化学性质, 使其具有较高的研究和应用价值. 在室温26 ℃下对Sc2O3进行了X射线衍射实验. 其热漫散射强度呈明显的振动形状, 将Sc2O3的全衍射背底强度方程展开, 并计算热漫散射强度的理论值, 直至计算到第14近邻原子(r为0.3816 nm)全衍射背底强度图谱. 将理论值与实验值拟合, 得到了最近邻原子至第7近邻原子所对应的原子间热振动相关效应值μ, 最近邻原子到第7近邻原子距离r的值分别为0.2067, 0.2148, 0.2161, 0.2671, 0.2945, 0.3229和0.3265 nm, 所对应的原子间热振动相关效应值μ分别为0.64, 0.63, 0.62, 0.61, 0.60, 0.58和0.57. 研究发现Sc2O3热漫散射强度大小与原子的热振动密切相关, 对热漫散射强度振动形状影响最大的是第7近邻原子Sc1-Sc2间的热振动相关效应μ, 原子间热振动相关效应值μ对研究材料的力热性质提供很重要的参数, 为下一步计算比热和原子间力常数打下基础, 其对于材料的力热方面的用途与发展有着至关重要的作用.
    Atoms in crystals will generate thermal diffuse scattering during thermal vibration. Thermal diffuse scattering analysis has great potential applications in condensed matter physics and material science research. Scandium oxide (Sc2O3) has unique physical and chemical properties, which make it have high research and application value. In this work, X-ray diffraction experiment is performed on Sc2O3 at room temperature of 26 ℃. The thermal diffuse scattering intensity exhibits a clear vibrational shape. The full diffraction back-based intensity equation of Sc2O3 is expanded, and the theoretical value of the thermal diffuse scattering intensity is calculated until the full diffraction back-based intensity spectrum of the 14th nearest atom (r = 0.3816 nm) is calculated. By fitting the theoretical value to the experimental value, we can see the inter-atomic thermal vibration correlation effect μ values corresponding to the nearest neighbor atom to the 7th nearest neighbor atom, the values of distance r from the nearest neighbor atom to the 7th nearest neighbor atom are 0.2067, 0.2148, 0.2161, 0.2671, 0.2945, 0.3229 and 0.3265nm, respectively, corresponding to their inter-atomic thermal vibration correlation effect μ values of 0.64, 0.63, 0.62, 0.61, 0.60, 0.58 and 0.57. Research result shows that the intensity of thermal diffuse scattering in Sc2O3 is closely related to the atomic thermal vibration, the most significant influence on the vibration shape of thermal diffuse scattering intensity is the thermal vibration correlation effect between the 7th nearest atom Sc1-Sc2. Inter-atomic thermal vibration correlation effect μ values will provide important parameters for studying the mechanical and thermal properties of materials, laying the foundation for the next-step calculating specific heat and interatomic force constant, and thus playing a crucial role in the use and development of materials.
      通信作者: 香莲, nmmdxl@163.com
    • 基金项目: 内蒙古自治区自然科学基金(批准号: 2018MS01007, 2022MS01014, 2023LHMS01011)、内蒙古民族大学博士启动基金(批准号: BS625)和内蒙古自治区直属高校基本科研业务费项目资助的课题.
      Corresponding author: Xiang-Lian, nmmdxl@163.com
    • Funds: Project supported by the Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2018MS01007, 2022MS01014, 2023LHMS01011), the Doctor Research Start-up Fund of Inner Mongolia Minzu University, China (Grant No. BS625), and the Basic Scientific Research Projects in Colleges and Universities directly under Inner Mongolia Autonomous Region.
    [1]

    Kulikov B P, Baranov V N, Bezrukikh A I, Deev V B, Motkov M M 2018 Metallurgist 61 1115Google Scholar

    [2]

    唐冲冲, 常化强, 包晓刚, 刘贵清, 刘奎仁 2012 中国稀土学报 30 680

    Tang C C, Chang H Q, Bao X G, Liu G Q, Liu K R 2012 CJCR 30 680

    [3]

    Masanori H, Kouji Y, Hiromasa Y, Toru H O 2008 J. Alloys Compd. 474 124Google Scholar

    [4]

    Zhigachev A O, Rodaev V V, Zhigacheva D V, Lyskov N V, Shchukina M A 2021 Ceram. Int. 47 32490Google Scholar

    [5]

    Pu Y C, Li S R, Yan S, Huang X, Wang D, Ye Y Y, Liu Y Q 2019 Fuel 241 607Google Scholar

    [6]

    Nakazono K, Takahashi R, Yamada Y, Sato S 2021 Mol. Catal. 516 111996Google Scholar

    [7]

    Sha H Y, He Z Z, Li C, Wang X Y, Jiang Q, Zeng F M, Su Z M 2019 Opt. Mater. 93 39Google Scholar

    [8]

    Xue J M, Li F, Liu Y Q, Yang F, Hou Z X 2023 Appl. Surf. Sci. 613 155984Google Scholar

    [9]

    Zhang C, Zhou Z X, Tang Z M, Ballo D, Wang C, Jian G 2022 J. Alloys Compd. 889 161622Google Scholar

    [10]

    Poirot N, Bregiroux D, Boy P, Autret-Lambert C, Belleville P, Bianchi L 2015 Ceram. Int. 41 3879Google Scholar

    [11]

    Toshiyuki M T I J L 2005 J. Am. Ceram. Soc. 88 817Google Scholar

    [12]

    Jiang B X, Hu C, Li J, Kou H, Shi Y, Liu W B, Pan Y B 2011 J. Rare Earths 29 951Google Scholar

    [13]

    Lu S Z, Yang Q H 2012 Chin. Phys. B 21 047801Google Scholar

    [14]

    Lu X, Jiang B X, Li J, Liu W B, Wang L, Ba X B, Hu C, Liu B L, Pan Y B 2013 Ceram. Int. 39 4695Google Scholar

    [15]

    Ma M Z, Dong L L, Jing W, Xu T, Kang B, Hou F 2019 Proceedings of the 11th International Conference on High-Performance Ceramics Kunming, China, May 25–29, 2019 p012080

    [16]

    Dai Z F, Liu Q, Hrenia D, Dai J W, Wang W, Li J 2018 Opt. Mater. 75 673Google Scholar

    [17]

    Wang Y, Sun X D, Qiu G M 2007 J. Rare Earths 25 68Google Scholar

    [18]

    Jacobsohn L G, Serivalsatit K, Quarles C A, Ballato J 2015 J. Mater. Sci. 50 3183Google Scholar

    [19]

    杨丛松, 陈博, 王芳, 郑剑平, 赵建翔 2017 稀有金属 41 163Google Scholar

    Yang C S, Chen B, Wang F, Zheng J P, Zhao J X 2017 Chin. Rare Metals 41 163Google Scholar

    [20]

    Kong P F, Pu Y T, Ma P, Zhu J L 2020 Thin Solid Films 714 138357Google Scholar

    [21]

    Sakuma T, Shimoyama T, Basar K, Xianglian, Takahashi H, Arai M, Ishii Y 2005 Solid State Ion 176 2689Google Scholar

    [22]

    Arai M, Sakuma T 2001 J. Phys. Soc. Jpn. 70 144Google Scholar

    [23]

    Beni G, Platzman P M 1976 Phys. Rev. B 14 1514

    [24]

    Basar K, Xianglian, Sakuma T, Takahashi H, Igawa N 2009 ITB J. Sci. (Bdg.) 41 50Google Scholar

    [25]

    Sakuma T, Makhsun, Sakai R, Xianglian, Takahashi H, Basar K, Igawa N, Sergey A D 2015 AIP Conf. Proc. 1656 020002Google Scholar

    [26]

    Wada T, Sakuma T, Sakai R, Uehara H, Xianglian, Takahashi H, Kamishima O, Igawa N, Sergey A D 2012 Solid State Ion 225 18Google Scholar

    [27]

    Sakuma T, Mohapatra S R, Uehara H, Sakai R, Xianglian, Takahashi H, Igawa N, Basar K 2011 Atom Indonesia 36 121Google Scholar

    [28]

    Sakuma T, Xianglian, Shimizu N, Mohapatra S R, Isozaki N, Uehara H, Takahashi H, Basar K, Igawa N, Kamishima O 2010 Solid State Ion 192 54Google Scholar

    [29]

    Sakuma T, Xianglian, Siagian S, Basar K, Takahashi H, Igawa N, Kamishima O 2010 J. Therm. Anal. Calorim. 99 173Google Scholar

    [30]

    Basar K, Siagian S, Xianglian, Sakuma T, Takahashi H, Igawa N 2008 Nucl. Instrum. Methods Phys. Res. A 600 237Google Scholar

    [31]

    香莲, 赵敏兰, 佐久间隆, 井川直樹 2015 原子与分子 32 499Google Scholar

    Xianglian, Zhao M L, Sakuma T, Igawa N 2015 J. at. Mol. Sci. 32 499Google Scholar

    [32]

    Xianglian, Sakuma T, Mohapatra S R, Uehara H, Takahashi H, Kamishima O, Igawa N 2012 Mol. Simul. 38 448Google Scholar

    [33]

    Xianglian, Basar K, Honda H, Siagian S, Ohara K, Sakuma T, Takahashi H, Igawa N, Ishii Y 2007 Solid State Ion 179 776Google Scholar

    [34]

    郭田田, 香莲, 包文秀, 包桂芝 2018 光散射学报 30 182Google Scholar

    Guo T T, Xianglian, Bao W X, Bao G Z 2018 J. Light Scatter. 30 182Google Scholar

    [35]

    Sakuma T 1992 J. Phys. Soc. Jpn. 61 4041Google Scholar

    [36]

    刘泽朋, 王瑞刚, 香莲, 包桂芝 2023 内蒙古民族大学学报(自然科学版) 38 199Google Scholar

    Liu Z P, Wang R G, Xianglian, Bao G Z 2023 J. Inner Mongolia Minzu Univ. (Nat. Sci.) 38 199Google Scholar

    [37]

    Rietveld H M 1967 Acta Cryst. 22 151Google Scholar

    [38]

    Izumi F, Ikeda T 2000 Mater. Sci. Forum 399 198Google Scholar

    [39]

    Lonsdale K 1962 International Tables for X-Ray Crystallography (Vol. III) (United Kingdo: Published by International Union of Crystallography) pp72–103

  • 图 1  (a) Sc2O3的X射线衍射实验图谱; (b) Sc2O3的热漫散射强度图谱

    Fig. 1.  (a) X-ray diffraction experimental pattern of Sc2O3; (b) thermal diffuse scattering intensity spectrum of Sc2O3.

    图 2  (a)原子独立振动产生的热漫散射强度; (b) Sc2O3的Compton散射强度; (c) Sc2O3全衍射背底强度

    Fig. 2.  (a) Thermal diffuse scattering intensity generated by independent vibration each atom; (b) Compton scattering intensity of Sc2O3; (c) Sc2O3 full diffraction back-base intensity.

    图 3  Sc2O3的全衍射背底强度的计算结果和实验结果的对比 (a)最近邻原子; (b)第1—3近邻原子; (c)第1—5近邻原子; (d) 第1—7近邻原子; (e)第1—9近邻原子; (f)第1—11近邻原子

    Fig. 3.  Comparison between calculated and experimental results of the total diffraction back-base intensity of Sc2O3: (a) The nearest neighbor atom; (b) the 1–3 nearest neighbor atomic; (c) the 1–5 nearest neighbor atomic; (d) the 1–7 nearest neighbor atomic; (e) the 1–9 nearest neighbor atom; (f) the 1–11 nearest neighbor atom.

    图 4  Sc2O3晶体结构模型和原子间距离

    Fig. 4.  Sc2O3 crystal structure model and interatomic distance.

    图 5  Sc2O3粉末晶体的各原子间相关效应产生的热漫散射强度

    Fig. 5.  Thermal diffuse scattering intensity generated by the inter atomic correlation effect of Sc2O3 powder crystal.

    图 6  Sc2O3在室温26 ℃下原子间热振动相关效应值μ与原子间距离r的图谱, 以及与其他几种材料的的对比

    Fig. 6.  Spectrum of the inter-atomic thermal vibration correlation effect values μ and the inter-atomic distance r of Sc2O3 at room temperature of 26 ℃. The corresponding spectra of other materials are also given.

    表 1  (2)式中各参数物理意义

    Table 1.  Physical meaning of each parameter in Eq. (2).

    参数物理意义参数物理意义
    $k$仪器参数$ {N_0} $晶体内晶胞数
    ${u_i}$单位晶胞内i原子数${Z_{{r_{s\left( i \right)s'\left( j \right)}}}}$配位数
    ${f_i}$i原子散射因子${r_{s\left( i \right)s'\left( j \right)}}$晶胞内i原子与j原子间距
    ${B_i}$i原子各向同性温度因子${\sigma _{{\text{incoh}}}}$非干涉性的原子散射截面
    Ie单个电子散射强度θ散射角
    λ入射光线波长
    下载: 导出CSV

    表 2  Sc2O3的晶体结构参数

    Table 2.  Crystal structure parameters of Sc2O3.

    x y z B/nm2
    Sc1 0.2500 0.2500 0.2500 0.003329
    Sc2 0.4649 0 0.2500 0.011085
    O 0.3928 0.1528 0.3802 0.009657
    下载: 导出CSV

    表 3  Sc2O3的原子间热振动相关效应值μ

    Table 3.  Interatomic thermal vibration related effect values of Sc2O3.

    原子间距离r/nm 配位数Z 原子间相关效应值$ \mu $
    O-Sc2 0.2067 2 0.64
    O-Sc2 0.2148 1 0.63
    O-Sc1 0.2161 1 0.62
    O-O 0.2671 4 0.61
    O-O 0.2945 1 0.60
    O-O 0.3229 2 0.58
    Sc1-Sc2 0.3265 6 0.57
    下载: 导出CSV
    Baidu
  • [1]

    Kulikov B P, Baranov V N, Bezrukikh A I, Deev V B, Motkov M M 2018 Metallurgist 61 1115Google Scholar

    [2]

    唐冲冲, 常化强, 包晓刚, 刘贵清, 刘奎仁 2012 中国稀土学报 30 680

    Tang C C, Chang H Q, Bao X G, Liu G Q, Liu K R 2012 CJCR 30 680

    [3]

    Masanori H, Kouji Y, Hiromasa Y, Toru H O 2008 J. Alloys Compd. 474 124Google Scholar

    [4]

    Zhigachev A O, Rodaev V V, Zhigacheva D V, Lyskov N V, Shchukina M A 2021 Ceram. Int. 47 32490Google Scholar

    [5]

    Pu Y C, Li S R, Yan S, Huang X, Wang D, Ye Y Y, Liu Y Q 2019 Fuel 241 607Google Scholar

    [6]

    Nakazono K, Takahashi R, Yamada Y, Sato S 2021 Mol. Catal. 516 111996Google Scholar

    [7]

    Sha H Y, He Z Z, Li C, Wang X Y, Jiang Q, Zeng F M, Su Z M 2019 Opt. Mater. 93 39Google Scholar

    [8]

    Xue J M, Li F, Liu Y Q, Yang F, Hou Z X 2023 Appl. Surf. Sci. 613 155984Google Scholar

    [9]

    Zhang C, Zhou Z X, Tang Z M, Ballo D, Wang C, Jian G 2022 J. Alloys Compd. 889 161622Google Scholar

    [10]

    Poirot N, Bregiroux D, Boy P, Autret-Lambert C, Belleville P, Bianchi L 2015 Ceram. Int. 41 3879Google Scholar

    [11]

    Toshiyuki M T I J L 2005 J. Am. Ceram. Soc. 88 817Google Scholar

    [12]

    Jiang B X, Hu C, Li J, Kou H, Shi Y, Liu W B, Pan Y B 2011 J. Rare Earths 29 951Google Scholar

    [13]

    Lu S Z, Yang Q H 2012 Chin. Phys. B 21 047801Google Scholar

    [14]

    Lu X, Jiang B X, Li J, Liu W B, Wang L, Ba X B, Hu C, Liu B L, Pan Y B 2013 Ceram. Int. 39 4695Google Scholar

    [15]

    Ma M Z, Dong L L, Jing W, Xu T, Kang B, Hou F 2019 Proceedings of the 11th International Conference on High-Performance Ceramics Kunming, China, May 25–29, 2019 p012080

    [16]

    Dai Z F, Liu Q, Hrenia D, Dai J W, Wang W, Li J 2018 Opt. Mater. 75 673Google Scholar

    [17]

    Wang Y, Sun X D, Qiu G M 2007 J. Rare Earths 25 68Google Scholar

    [18]

    Jacobsohn L G, Serivalsatit K, Quarles C A, Ballato J 2015 J. Mater. Sci. 50 3183Google Scholar

    [19]

    杨丛松, 陈博, 王芳, 郑剑平, 赵建翔 2017 稀有金属 41 163Google Scholar

    Yang C S, Chen B, Wang F, Zheng J P, Zhao J X 2017 Chin. Rare Metals 41 163Google Scholar

    [20]

    Kong P F, Pu Y T, Ma P, Zhu J L 2020 Thin Solid Films 714 138357Google Scholar

    [21]

    Sakuma T, Shimoyama T, Basar K, Xianglian, Takahashi H, Arai M, Ishii Y 2005 Solid State Ion 176 2689Google Scholar

    [22]

    Arai M, Sakuma T 2001 J. Phys. Soc. Jpn. 70 144Google Scholar

    [23]

    Beni G, Platzman P M 1976 Phys. Rev. B 14 1514

    [24]

    Basar K, Xianglian, Sakuma T, Takahashi H, Igawa N 2009 ITB J. Sci. (Bdg.) 41 50Google Scholar

    [25]

    Sakuma T, Makhsun, Sakai R, Xianglian, Takahashi H, Basar K, Igawa N, Sergey A D 2015 AIP Conf. Proc. 1656 020002Google Scholar

    [26]

    Wada T, Sakuma T, Sakai R, Uehara H, Xianglian, Takahashi H, Kamishima O, Igawa N, Sergey A D 2012 Solid State Ion 225 18Google Scholar

    [27]

    Sakuma T, Mohapatra S R, Uehara H, Sakai R, Xianglian, Takahashi H, Igawa N, Basar K 2011 Atom Indonesia 36 121Google Scholar

    [28]

    Sakuma T, Xianglian, Shimizu N, Mohapatra S R, Isozaki N, Uehara H, Takahashi H, Basar K, Igawa N, Kamishima O 2010 Solid State Ion 192 54Google Scholar

    [29]

    Sakuma T, Xianglian, Siagian S, Basar K, Takahashi H, Igawa N, Kamishima O 2010 J. Therm. Anal. Calorim. 99 173Google Scholar

    [30]

    Basar K, Siagian S, Xianglian, Sakuma T, Takahashi H, Igawa N 2008 Nucl. Instrum. Methods Phys. Res. A 600 237Google Scholar

    [31]

    香莲, 赵敏兰, 佐久间隆, 井川直樹 2015 原子与分子 32 499Google Scholar

    Xianglian, Zhao M L, Sakuma T, Igawa N 2015 J. at. Mol. Sci. 32 499Google Scholar

    [32]

    Xianglian, Sakuma T, Mohapatra S R, Uehara H, Takahashi H, Kamishima O, Igawa N 2012 Mol. Simul. 38 448Google Scholar

    [33]

    Xianglian, Basar K, Honda H, Siagian S, Ohara K, Sakuma T, Takahashi H, Igawa N, Ishii Y 2007 Solid State Ion 179 776Google Scholar

    [34]

    郭田田, 香莲, 包文秀, 包桂芝 2018 光散射学报 30 182Google Scholar

    Guo T T, Xianglian, Bao W X, Bao G Z 2018 J. Light Scatter. 30 182Google Scholar

    [35]

    Sakuma T 1992 J. Phys. Soc. Jpn. 61 4041Google Scholar

    [36]

    刘泽朋, 王瑞刚, 香莲, 包桂芝 2023 内蒙古民族大学学报(自然科学版) 38 199Google Scholar

    Liu Z P, Wang R G, Xianglian, Bao G Z 2023 J. Inner Mongolia Minzu Univ. (Nat. Sci.) 38 199Google Scholar

    [37]

    Rietveld H M 1967 Acta Cryst. 22 151Google Scholar

    [38]

    Izumi F, Ikeda T 2000 Mater. Sci. Forum 399 198Google Scholar

    [39]

    Lonsdale K 1962 International Tables for X-Ray Crystallography (Vol. III) (United Kingdo: Published by International Union of Crystallography) pp72–103

  • [1] 徐浩哲, 徐象繁. Al2O3基导热聚合物中的热逾渗网络.  , 2023, 72(2): 024401. doi: 10.7498/aps.72.20221400
    [2] 吴丽, 王倩, 李国栋, 窦巧娅, 吉旭. 不同退火温度的Al2O3:C薄膜热释光和光释光性能.  , 2016, 65(3): 037802. doi: 10.7498/aps.65.037802
    [3] 漆世锴, 王小霞, 罗积润, 赵青兰, 李云. 磁控管用新型Y2O3-Gd2O3-HfO2浸渍W基直热式阴极研究.  , 2016, 65(5): 057901. doi: 10.7498/aps.65.057901
    [4] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究.  , 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [5] 刘福生, 陈贤鹏, 谢华兴, 敖伟琴, 李均钦. Sc2-xGaxW3O12体系负热膨胀性能研究.  , 2010, 59(5): 3350-3356. doi: 10.7498/aps.59.3350
    [6] 张斌, 张浩佳, 杨秋红, 陆神洲. α-Al2O3透明陶瓷的发光及热释光特性.  , 2010, 59(2): 1333-1337. doi: 10.7498/aps.59.1333
    [7] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响.  , 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [8] 杨新波, 李红军, 徐 军, 程 艳, 苏良碧, 唐 强. α-Al2O3:C晶体的热释光和光释光特性.  , 2008, 57(12): 7900-7905. doi: 10.7498/aps.57.7900
    [9] 黄生荣, 陈 朝. 纳秒级脉冲激光诱导Zn掺杂过程中GaN/Al2O3材料的温度分布及热形变解析分析.  , 2007, 56(8): 4596-4601. doi: 10.7498/aps.56.4596
    [10] 尚淑珍, 邵建达, 沈 健, 易 葵, 范正修. 退火对电子束热蒸发193nm Al2O3/MgF2反射膜性能的影响.  , 2006, 55(5): 2639-2643. doi: 10.7498/aps.55.2639
    [11] 张纯祥, 林理彬, 梁宝鎏, 唐强, 李德卉, 罗达玲. α-Al2O3单晶的热释光和光释光特性.  , 2004, 53(1): 291-295. doi: 10.7498/aps.53.291
    [12] 张纯祥, 林理彬, 唐 强, 罗达玲. α-Al2O3: Mn单晶的三维热释发光谱研究.  , 2004, 53(11): 3940-3944. doi: 10.7498/aps.53.3940
    [13] 陈丹平, 姜雄伟, 朱从善. Bi2O3-Li2O玻璃的热致变色研究.  , 2001, 50(8): 1501-1506. doi: 10.7498/aps.50.1501
    [14] 张西芹, 邢达. 超声调制介质中漫散射光自相关性质研究.  , 2001, 50(10): 1914-1919. doi: 10.7498/aps.50.1914
    [15] 吴柏枚, 杨东升, 郑萍, 盛松, 陈兆甲, 许勤伦. Hg0.9Tl0.2Ba2Ca2Cu3O8+δ在磁场下的热导.  , 2000, 49(2): 267-271. doi: 10.7498/aps.49.267
    [16] 彭练矛, 任罡. 热漫散射贡献的高能电子衍射吸收结构因子的Doyle-Turner解析表述.  , 1996, 45(8): 1344-1349. doi: 10.7498/aps.45.1344
    [17] 张贻瞳, 金新, 张长贵, 金继荣, 姚希贤, 吉争鸣, 孙志坚, 杨森祖. YBa2Cu3O7-δ薄膜热激发磁通蠕动研究.  , 1993, 42(7): 1174-1178. doi: 10.7498/aps.42.1174
    [18] 习金华, 吴礼金. 原子实极化效应对ScⅡ离子3d2三重态超精细相互作用的影响.  , 1992, 41(3): 370-378. doi: 10.7498/aps.41.370
    [19] 张贻瞳;金新;张长贵;金继荣;姚希贤;吉争鸣;孙志坚;杨森祖. YBa_2Cu_3O_7_薄膜热激发磁通蠕动研究.  , 1991, 40(7): 1174-1178. doi: 10.7498/aps.40.1174
    [20] 吴德昌, 王仁卉. 锌的X射线热漫散衍射及弹性系数.  , 1966, 22(5): 533-540. doi: 10.7498/aps.22.533
计量
  • 文章访问数:  1651
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-31
  • 修回日期:  2023-12-19
  • 上网日期:  2023-12-26
  • 刊出日期:  2024-03-20

/

返回文章
返回
Baidu
map