搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rice-Mele拓扑泵浦模型中的非绝热演化理论研究

张硕实 常名立 刘墨点 董建文

引用本文:
Citation:

Rice-Mele拓扑泵浦模型中的非绝热演化理论研究

张硕实, 常名立, 刘墨点, 董建文

Theoretical study of non-adiabatic evolution in Rice-Mele topological pumping model

ZHANG Shuoshi, CHANG Mingli, LIU Modian, DONG Jianwen
cstr: 32037.14.aps.74.20250485
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 拓扑泵浦模型可以在光学波导阵列体系中调控光场, 有望实现高抗干扰能力的片上光子器件. 本文从Rice-Mele拓扑泵浦模型出发, 分析了当系统绝热演化条件随结构长度缩短被破坏后的光场演化过程, 利用能带理论研究了其物理本质. 发现受绝热属性调控, 在特定参数下光场模式会经历非绝热演化但最终以边界态输出. 该演化结果与绝热演化一致, 可被称为等效绝热演化过程, 后利用微扰理论证明了该特殊现象的物理本质是能带干涉. 同时表明了绝热属性可以有效调控系统演化末态与边界态的一致程度, 实现完全一致或完全相异的两种输出结果. 该工作补充了拓扑泵浦非绝热演化的理论分析方法, 拓展了拓扑泵浦模型的光场调控能力, 可以作为光学波导阵列体系的基础设计理论, 有望设计高抗干扰且小型化的片上光子器件.
    Topological pumping based on Thouless pumping can be effectively applied to optical waveguide array systems to achieve robust light manipulation with strong disturbance resistance. One of its typical models, the Rice-Mele (R-M) model, enables directional light field to transmit from the leftmost (rightmost) waveguide to the rightmost (leftmost) waveguide, which can be utilized to realize fabrication-tolerant optical couplers. Adiabatic evolution is a critical factor influencing the transport of topological eigenstates. However, it requires the system’s parameter variation to be sufficiently slow, which leads to excessively long waveguide lengths, limiting device compactness. To reduce the size, non-adiabatic evolution offers a feasible alternative. Meanwhile, the adiabatic properties of topological pumping models introduce new degrees of freedom, expanding possibilities for light manipulation. Based on the R-M model, this work analyzes the relationship between adiabatic property and structure length L, investigates light field evolution behavior when adiabatic condition is violated, and explores the transition from adiabatic to non-adiabatic regimes. When adiabatic condition is satisfied (L1 = 1000 μm), the light field evolution aligns with the eigen edge state. The output mode is manifested as an edge state and localized at the edge waveguide. As length shortens (L2 = 250 μm and L4 = 30 μm), the deviation between light field and eigen edge state arises, and the eigen bulk states get involved in the light field. The output modes are manifested as the superposition of edge state and bulk state, with energy spreading to other waveguides. At a specific length (L3 = 110 μm), the light-field undergoes non-adiabatic evolution: initially deviating from the edge state and later returning to the edge state. This phenomenon is termed adiabatic equivalent evolution. The output mode is localized at the edge waveguide, which is the same as the adiabatic evolution. By analyzing the fidelity between output mode and eigen edge state, we demonstrate that the adiabaticity can effectively regulate fidelity, achieving signal on/off at the edge waveguide. As structural length decreases, fidelity gradually declines and exhibits an oscillating behavior. When fidelity approaches to 1, the adiabatic equivalent evolution emerges. The first-order perturbation approximation reveals that these oscillations stem from destructive interference between edge and bulk states, thereby confirming their intrinsic origin in band interference. This mechanism enables eigen edge state output at shorter lengths than adiabatic requirements, providing a reliable approach for miniaturizing devices. Furthermore, the fabrication tolerance is analyzed. Within the whole waveguides width deviation range of –35–+30 nm (relative deviation range of –7%–+6%), the transmission of edge waveguide through the adiabatic equivalent evolution is larger than 0.9. This work analyses light-field evolution process and underlying physics for topological pumping in non-adiabatic regimes, supplements theoretical methods for analyzing non-adiabatic evolution, and provides strategies for achieving eigen edge state output at reduced lengths. This work provides some feasible principles for designing topological optical waveguide arrays, guiding the development of compact and robust on-chip photonic devices such as optical couplers and splitters, which have broad application prospects in integrated photonics.
      通信作者: 董建文, dongjwen@mail.sysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62035016, 12274475)和广东省基础与应用基础研究基金(批准号: 2023B1515040023, 2023B1515020072)资助的课题.
      Corresponding author: DONG Jianwen, dongjwen@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62035016, 12274475) and the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant Nos. 2023B1515040023, 2023B1515020072).
    [1]

    Meng Y, Chen Y Z, Lu L H, Ding Y M, Cusano A, Fan J A, Hu Q M, Wang K Y, Xie Z W, Liu Z T, Yang Y M, Liu Q, Gong M L, Xiao Q R, Sun S L, Zhang M M, Yuan X C, Ni X J 2021 Light Sci. Appl. 10 235Google Scholar

    [2]

    Xu H N, Dai D X, Shi Y C 2019 Laser Photonics Rev. 13 1800349Google Scholar

    [3]

    Xu H N, Qin Y, Hu G L, Tsang H K 2023 Laser Photonics Rev. 17 2200550Google Scholar

    [4]

    Shen B, Wang P, Polson R, Menon R 2015 Nat. Photonics 9 378Google Scholar

    [5]

    Yu Z J, Xu H N, Liu D J, Li H, Shi Y C, Dai D X 2022 J. Lightwave Technol. 40 1784Google Scholar

    [6]

    Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R R, Kahn J M, Lončar M 2019 Nature 568 373Google Scholar

    [7]

    Wu H, Tan Y, Dai D X 2017 Opt. Express 25 6069Google Scholar

    [8]

    Gan R F, Qi L, Ruan Z L, Liu J, Guo C J, Chen K X, Liu L 2022 Opt. Lett. 47 5200Google Scholar

    [9]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photonics 8 821Google Scholar

    [10]

    Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, Carusotto I 2019 Rev. Mod. Phys. 91 015006Google Scholar

    [11]

    Tang G J, He X T, Shi F L, Liu J W, Chen X D, Dong J W 2022 Laser Photonics Rev. 16 2100300Google Scholar

    [12]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar

    [13]

    Yablonovitch E 2009 Nature 461 744Google Scholar

    [14]

    He X T, Liang E T, Yuan J J, Qiu H Y, Chen X D, Zhao F L, Dong J W 2019 Nat. Commun. 10 872Google Scholar

    [15]

    Shalaev M I, Walasik W, Tsukernik A, Xu Y, Litchinitser N M 2019 Nat. Nanotechnol. 14 31Google Scholar

    [16]

    Yang Y H, Yamagami Y, Yu X B, Pitchappa P, Webber J, Zhang B L, Fujita M, Nagatsuma T, Singh R 2020 Nat. Photonics 14 446Google Scholar

    [17]

    Sun L, Zhang Y, He Y, Wang H W, Su Y K 2020 Nanophotonics 9 1321Google Scholar

    [18]

    Mayer N, Ayuso D, Decleva P, Khokhlova M, Pisanty E, Ivanov M, Smirnova O 2024 Nat. Photonics 18 1155Google Scholar

    [19]

    He X T, Li M Y, Qiu H Y, Ruan W S, Zhou L D, Liu L, Chen X D, Chen W J, Zhao F L, Dong J W 2021 Photonics Res. 9 1423Google Scholar

    [20]

    Zeng Y Q, Chattopadhyay U, Zhu B F, Qiang B, Li J H, Jin Y H, Li L H, Davies A G, Linfield E H, Zhang B L, Chong Y D, Wang Q J 2020 Nature 578 246Google Scholar

    [21]

    Dai T X, Ma A, Mao J, Ao Y T, Jia X Y, Zheng Y, Zhai C H, Yang Y, Li Z H, Tang B, Luo J, Zhang B L, Hu X Y, Gong Q H, Wang J W 2024 Nat. Mater. 23 928Google Scholar

    [22]

    Thouless D J 1983 Phys. Rev. B 27 6083Google Scholar

    [23]

    Citro R, Aidelsburger M 2023 Nat. Rev. Phys. 5 87Google Scholar

    [24]

    苑涛, 戴汉宁, 陈宇翱 2023 72 160302Google Scholar

    Yuan T, Dai H N, Chen Y A 2023 Acta Phys. Sin. 72 160302Google Scholar

    [25]

    王睿琦, 李础, 李焱 2024 光学学报 44 1732012Google Scholar

    Wang R Q, Li C, Li Y 2024 Acta Opt. Sin. 44 1732012Google Scholar

    [26]

    Rice M J, Mele E J 1982 Phys. Rev. Lett. 49 1455Google Scholar

    [27]

    Sun L, Wang H W, He Y, Zhang Y, Tang G J, He X T, Dong J W, Su Y K 2022 Laser Photonics Rev. 16 2200354Google Scholar

    [28]

    Song W G, You O B, Sun J C, Wu S J, Chen C, Huang C Y, Qiu K, Zhu S N, Zhang S, Li T 2024 Sci. Adv. 10 eadn5028Google Scholar

    [29]

    Wu S J, Song W G, Sun J C, Li J, Lin Z Y, Liu X Y, Zhu S N, Li T 2024 Nat. Commun. 15 9805Google Scholar

    [30]

    Fedorova Z, Qiu H X, Linden S, Kroha J 2020 Nat. Commun. 11 3758Google Scholar

    [31]

    Privitera L, Russomanno A, Citro R, Santoro G E 2018 Phys. Rev. Lett. 120 106601Google Scholar

    [32]

    Liu X Y, Lin Z Y, Song W G, Sun J C, Huang C Y, Wu S J, Xiao X J, Xin H R, Zhu S N, Li T 2024 Phys. Rev. Lett. 132 016601Google Scholar

    [33]

    Mei F, Chen G, Tian L, Zhu S L, Jia S T 2018 Phys. Rev. A 98 012331Google Scholar

    [34]

    Qi L, Wang G L, Liu S T, Zhang S, Wang H F 2020 Phys. Rev. A 102 022404Google Scholar

    [35]

    Martínez-Garaot S, Ruschhaupt A, Gillet J, Busch T, Muga J G 2015 Phys. Rev. A 92 043406Google Scholar

  • 图 1  由R-M模型设置的波导阵列结构示意图. 波导结构沿z方向缓变, 沿y方向周期性排列, 一个原胞由两根波导A和B组成. L为结构长度, N为周期数, 一共有2N根波导. 光从第一根波导入射

    Fig. 1.  Schematic diagram of the waveguide array structure configured by the R-M model. The waveguides gradually vary along the z-direction and are periodically arranged along the y-direction, with a unit cell consisting of two waveguides A and B. L represents the structure length, N represents the number of periods. The array comprises 2N waveguides. Light is incident from the first waveguide.

    图 2  哈密顿量的能带结构及本征态 (a)当N = 5时的能带结构, kz为哈密顿量本征值, 从下至上第1—4条能带和7—10条能带对应体态, 5, 6条能带对应边界态; (b)第5, 6条能带随参数ϕ演化的本征边界态. IA, IIA, IIIA和IVA分别对应第5能带四个位置的边界态, 从局域在1波导的边界态逐渐演化为局域在10波导的边界态. IB, IIB, IIIB和IVB分别对应第6能带四个位置的边界态, 从局域在10波导的边界态逐渐演化为局域在1波导的边界态

    Fig. 2.  Band structure and eigenstates of the Hamiltonian. (a) Band structure for N = 5, where kz represents the eigenvalues of the Hamiltonian. The 1 st to 4 th and 7 th to 10 th bands (from bottom to top) correspond to bulk states, while the 5 th and 6 th bands correspond to edge states. (b) Evolution of the eigen edge states for the 5 th and 6 th bands with the parameter ϕ. IA, IIA, IIIA, and IVA denote the eigen wave function of edge states at four positions of the 5 th band. Energy transfer from waveguide 1 to waveguide 10. IB, IIB, IIIB, and IVB denote the edge states at four positions of the 6 th band, whose energy transfer from waveguide 10 to waveguide 1.

    图 3  N = 5时系统的绝热度随结构长度L的变化关系 (a)平均绝热度$ \langle c\rangle $随结构长度L的变化关系; (b)不同结构长度下绝热度c45随演化过程的变化关系

    Fig. 3.  Adiabaticity of the system as a function of the structure length L when N = 5: (a) The average adiabaticity $\langle c\rangle $ as a function of the structure length L; (b) variation of the adiabaticity c45 during the evolution process under different structural lengths L.

    图 4  四种演化案例的光场演化过程 (a) 边界态能量占比p5的演化函数, 粉色曲线对应L1 = 1000 μm, 褐色曲线对应L2 = 250 μm, 绿色曲线对应L3 = 110 μm, 黄色曲线对应L4 = 30 μm; (b), (d), (f), (h) 4种演化过程中不同波导的能量分布; (c), (e), (g), (i) 4种演化过程中不同能带上的能量分布

    Fig. 4.  Evolution of the light field for four different cases: (a) Evolution of the energy proportion of edge state p5. The pink curve corresponds to L1 = 1000 μm, brown to L2 = 250 μm, green to L3 = 110 μm, and yellow to L4 = 30 μm; (b), (d), (f), (h) energy distribution across waveguides for the four cases during evolution; (c), (e), (g), (i) energy distribution across bands for the four cases during evolution.

    图 5  不同案例在能带上的演化轨迹示意图. 黑色曲线为哈密顿量能带, 带颜色虚线为演化轨迹示意, 粉色虚线对应绝热演化案例L1 = 1000 μm, 褐色和黄色虚线对应非绝热演化案例L2 = 250 μm和L4 = 30 μm, 绿色虚线对应等效绝热演化案例L3 = 110 μm

    Fig. 5.  Schematic of evolution trajectories across bands for different cases. The black curves represent the band structure of the Hamiltonian, and the colored dashed lines depict the evolution trajectories. The pink dashed line corresponds to the adiabatic case for L1 = 1000 μm, while the brown and yellow dashed lines correspond to the non-adiabatic cases L2 = 250 μm and L4 = 30 μm, and the green dashed line corresponds to the adiabatic equivalent case L3 = 110 μm.

    图 6  不同结构长度L对应的保真度F. 绿色五角星对应在非绝热演化范畴出现的等效绝热演化

    Fig. 6.  The fidelity F as a function of the structure length L. The green pentagram marks the adiabatic equivalent evolution, presenting at non-adiabatic regime.

    图 7  保真度F极大值和一阶微扰近似计算结果${| {g_4^{(1)}(L)} |^2}$极小值对应的位置 (a)保真度F随结构长度L的变化关系; (b) ${| {g_4^{(1)}(L)} |^2}$随结构长度L的变化关系. 红点对应极大值/极小值出现的位置

    Fig. 7.  The positions correspond to maxima of the fidelity F and minima of the first-order perturbation approximation result ${| {g_4^{(1)}(L)} |^2}$: (a) Fidelity F as a function of the structure length L; (b) ${| {g_4^{(1)}(L)} |^2}$ as a function of the structure length L. Red dots mark the positions where the maxima/minima occur.

    图 8  等效绝热演化下第10根边界波导的透射率T10随整体波导宽度误差δw的变化关系

    Fig. 8.  The transmission of the 10th edge waveguide T10 as a function of the waveguides width deviation δw in adiabatic equivalent evolution.

    Baidu
  • [1]

    Meng Y, Chen Y Z, Lu L H, Ding Y M, Cusano A, Fan J A, Hu Q M, Wang K Y, Xie Z W, Liu Z T, Yang Y M, Liu Q, Gong M L, Xiao Q R, Sun S L, Zhang M M, Yuan X C, Ni X J 2021 Light Sci. Appl. 10 235Google Scholar

    [2]

    Xu H N, Dai D X, Shi Y C 2019 Laser Photonics Rev. 13 1800349Google Scholar

    [3]

    Xu H N, Qin Y, Hu G L, Tsang H K 2023 Laser Photonics Rev. 17 2200550Google Scholar

    [4]

    Shen B, Wang P, Polson R, Menon R 2015 Nat. Photonics 9 378Google Scholar

    [5]

    Yu Z J, Xu H N, Liu D J, Li H, Shi Y C, Dai D X 2022 J. Lightwave Technol. 40 1784Google Scholar

    [6]

    Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R R, Kahn J M, Lončar M 2019 Nature 568 373Google Scholar

    [7]

    Wu H, Tan Y, Dai D X 2017 Opt. Express 25 6069Google Scholar

    [8]

    Gan R F, Qi L, Ruan Z L, Liu J, Guo C J, Chen K X, Liu L 2022 Opt. Lett. 47 5200Google Scholar

    [9]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photonics 8 821Google Scholar

    [10]

    Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, Carusotto I 2019 Rev. Mod. Phys. 91 015006Google Scholar

    [11]

    Tang G J, He X T, Shi F L, Liu J W, Chen X D, Dong J W 2022 Laser Photonics Rev. 16 2100300Google Scholar

    [12]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar

    [13]

    Yablonovitch E 2009 Nature 461 744Google Scholar

    [14]

    He X T, Liang E T, Yuan J J, Qiu H Y, Chen X D, Zhao F L, Dong J W 2019 Nat. Commun. 10 872Google Scholar

    [15]

    Shalaev M I, Walasik W, Tsukernik A, Xu Y, Litchinitser N M 2019 Nat. Nanotechnol. 14 31Google Scholar

    [16]

    Yang Y H, Yamagami Y, Yu X B, Pitchappa P, Webber J, Zhang B L, Fujita M, Nagatsuma T, Singh R 2020 Nat. Photonics 14 446Google Scholar

    [17]

    Sun L, Zhang Y, He Y, Wang H W, Su Y K 2020 Nanophotonics 9 1321Google Scholar

    [18]

    Mayer N, Ayuso D, Decleva P, Khokhlova M, Pisanty E, Ivanov M, Smirnova O 2024 Nat. Photonics 18 1155Google Scholar

    [19]

    He X T, Li M Y, Qiu H Y, Ruan W S, Zhou L D, Liu L, Chen X D, Chen W J, Zhao F L, Dong J W 2021 Photonics Res. 9 1423Google Scholar

    [20]

    Zeng Y Q, Chattopadhyay U, Zhu B F, Qiang B, Li J H, Jin Y H, Li L H, Davies A G, Linfield E H, Zhang B L, Chong Y D, Wang Q J 2020 Nature 578 246Google Scholar

    [21]

    Dai T X, Ma A, Mao J, Ao Y T, Jia X Y, Zheng Y, Zhai C H, Yang Y, Li Z H, Tang B, Luo J, Zhang B L, Hu X Y, Gong Q H, Wang J W 2024 Nat. Mater. 23 928Google Scholar

    [22]

    Thouless D J 1983 Phys. Rev. B 27 6083Google Scholar

    [23]

    Citro R, Aidelsburger M 2023 Nat. Rev. Phys. 5 87Google Scholar

    [24]

    苑涛, 戴汉宁, 陈宇翱 2023 72 160302Google Scholar

    Yuan T, Dai H N, Chen Y A 2023 Acta Phys. Sin. 72 160302Google Scholar

    [25]

    王睿琦, 李础, 李焱 2024 光学学报 44 1732012Google Scholar

    Wang R Q, Li C, Li Y 2024 Acta Opt. Sin. 44 1732012Google Scholar

    [26]

    Rice M J, Mele E J 1982 Phys. Rev. Lett. 49 1455Google Scholar

    [27]

    Sun L, Wang H W, He Y, Zhang Y, Tang G J, He X T, Dong J W, Su Y K 2022 Laser Photonics Rev. 16 2200354Google Scholar

    [28]

    Song W G, You O B, Sun J C, Wu S J, Chen C, Huang C Y, Qiu K, Zhu S N, Zhang S, Li T 2024 Sci. Adv. 10 eadn5028Google Scholar

    [29]

    Wu S J, Song W G, Sun J C, Li J, Lin Z Y, Liu X Y, Zhu S N, Li T 2024 Nat. Commun. 15 9805Google Scholar

    [30]

    Fedorova Z, Qiu H X, Linden S, Kroha J 2020 Nat. Commun. 11 3758Google Scholar

    [31]

    Privitera L, Russomanno A, Citro R, Santoro G E 2018 Phys. Rev. Lett. 120 106601Google Scholar

    [32]

    Liu X Y, Lin Z Y, Song W G, Sun J C, Huang C Y, Wu S J, Xiao X J, Xin H R, Zhu S N, Li T 2024 Phys. Rev. Lett. 132 016601Google Scholar

    [33]

    Mei F, Chen G, Tian L, Zhu S L, Jia S T 2018 Phys. Rev. A 98 012331Google Scholar

    [34]

    Qi L, Wang G L, Liu S T, Zhang S, Wang H F 2020 Phys. Rev. A 102 022404Google Scholar

    [35]

    Martínez-Garaot S, Ruschhaupt A, Gillet J, Busch T, Muga J G 2015 Phys. Rev. A 92 043406Google Scholar

  • [1] 刘雨熙, 周宇龙, 邵烁婷, 尉鹏飞, 梁奇锋, 王小同, 唐桧波, 况龙钰, 胡广月. 红外超连续辐射泵浦电光晶体产生的太赫兹辐射.  , 2025, 74(14): 140701. doi: 10.7498/aps.74.20250212
    [2] 何霄, 肖小舟, 何滨, 薛平, 肖嘉莹. 基于光声泵浦成像的氧分压测量定量分析.  , 2023, 72(21): 218101. doi: 10.7498/aps.72.20231041
    [3] 苑涛, 戴汉宁, 陈宇翱. 超冷原子动量光晶格中的非线性拓扑泵浦.  , 2023, 72(16): 160302. doi: 10.7498/aps.72.20230740
    [4] 熊振宇, 蔡远文, 吴昊, 刘通, 刘政良, 任元. 环形泵浦激发下微腔激子极化激元的涡旋叠加态演化分析.  , 2021, 70(24): 240304. doi: 10.7498/aps.70.20210971
    [5] 周建忠, 陈抱雪, 李家韡, 王关德, 浜中广见. 光波导脉冲耦合器研究.  , 2014, 63(1): 014211. doi: 10.7498/aps.63.014211
    [6] 任春年, 史鹏, 刘凯, 李文东, 赵洁, 顾永建. 初态对光波导阵列中连续量子行走影响的研究.  , 2013, 62(9): 090301. doi: 10.7498/aps.62.090301
    [7] 汪大林, 孙军强, 王 健. 基于周期极化反转铌酸锂光波导高速非归零码到归零码的转换.  , 2008, 57(1): 252-259. doi: 10.7498/aps.57.252
    [8] 宋 琦, 宋昌烈, 李成仁, 李淑凤, 李建勇. 纵向非均匀掺铒的光波导放大器特性数值模拟研究.  , 2005, 54(4): 1624-1629. doi: 10.7498/aps.54.1624
    [9] 赵建林, 李碧丽, 张 鹏, 杨德兴, 李振伟. 用光辐照法在SBN:Cr晶体中写入动态阵列平面光波导.  , 2004, 53(8): 2583-2588. doi: 10.7498/aps.53.2583
    [10] 吴重庆, 董 晖, 傅松年, 刘海涛. 任意坐标系下非圆正规光波导的一般解及应用.  , 2003, 52(2): 383-389. doi: 10.7498/aps.52.383
    [11] 佘卫龙, 余振新, 李荣基. 光折变“波导”诱失锁模ps激光脉冲自泵浦相位共轭.  , 1996, 45(12): 2010-2015. doi: 10.7498/aps.45.2010
    [12] 刘永贵, 钱宝良, 李传胪. 具有等离子体背景的电磁泵浦自由电子激光.  , 1995, 44(3): 409-412. doi: 10.7498/aps.44.409
    [13] 赵阳, 杨淑雯. Er3+掺杂光纤孤子放大器(Ⅱ)——最佳泵浦.  , 1994, 43(8): 1281-1288. doi: 10.7498/aps.43.1281
    [14] 郭旗, 任占梅, 廖常俊, 刘颂豪. 非中心对称介质构成的光波导中的孤子传输.  , 1992, 41(7): 1097-1105. doi: 10.7498/aps.41.1097
    [15] 王祖赓. 锂蒸气中双光子泵浦的六波、四波混频和受激辐射.  , 1990, 39(1): 76-81. doi: 10.7498/aps.39.76
    [16] 关信安, 赵智虹. 同步泵浦-被动锁模染料激光器的基本方程及其解.  , 1989, 38(1): 16-23. doi: 10.7498/aps.38.16
    [17] 马锦秀, 徐至展. 激光等离子体拍频波加速器中泵浦倒空的消除.  , 1988, 37(10): 1652-1657. doi: 10.7498/aps.37.1652
    [18] 鲍晓毅, 吴存恺. 相位对同步泵浦锁模染料激光系统参数的影响.  , 1988, 37(5): 851-856. doi: 10.7498/aps.37.851
    [19] 关信安, 赵智虹. 适用于CW同步泵浦染料激光器的锁模方程及其解.  , 1988, 37(2): 335-340. doi: 10.7498/aps.37.335
    [20] 王祖赓, 李敏. 光学泵浦的锂分子激光.  , 1988, 37(10): 1640-1645. doi: 10.7498/aps.37.1640
计量
  • 文章访问数:  346
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-15
  • 修回日期:  2025-05-01
  • 上网日期:  2025-05-10

/

返回文章
返回
Baidu
map