搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低磁场螺旋波等离子体中Trivelpiece-Gould波的功率沉积特性

李文秋 唐彦娜 刘雅琳 王刚

引用本文:
Citation:

低磁场螺旋波等离子体中Trivelpiece-Gould波的功率沉积特性

李文秋, 唐彦娜, 刘雅琳, 王刚

Analysis of power deposition characteristics of Trivelpiece-Gould wave in low magnetic field helicon plasma

LI Wenqiu, TANG Yanna, LIU Yalin, WANG Gang
cstr: 32037.14.aps.74.20250303
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 深入理解螺旋波等离子体中的低磁场密度峰值现象, 对全面揭示螺旋波放电机制至关重要. 本研究基于低温等离子体动理学效应和带电粒子温度各向异性假设, 利用均匀等离子体中电磁波的一般色散关系, 理论分析了低磁场(<100 G (1 G = 10–4 T))、低气压条件下Trivelpiece-Gould (TG) 波的色散特性、波数关系及功率沉积特性. 研究结果表明: 在波频率ω/2π = 13.56 MHz、离子与电子轴向温度比值Ti, z/Te, z = 0.1、等离子体密度n0 = 1×1011 cm–3、中性气体(Ar)气压pAr = 0.5 mTorr (1 mTorr = 0.133 Pa)参量条件下, 粒子间的碰撞阻尼效应彻底改变了螺旋波与TG波的色散特性和波数关系; 对于TG波 m = 0角向模, n = 1径向模较其余高次径向模在功率沉积中扮演主要角色; 对于TG波(m = 0, n = 1)模, 在电子温度Te, z $\in $ (3, 8) eV范围内, 在低磁场和电子温度各向异性因子$\chi_{\rm{e}} \ll 1 $(χe = Te, ⊥/Te, z)条件下朗道阻尼在功率沉积中占据主导地位, 而在高磁场和$ \chi_{\rm{e}} \gg 1$条件下碰撞阻尼主导功率沉积.
    Low-field peak phenomenon, which has been observed in low magnetic helicon plasma discharge, is generally considered to have great commercial value in the field of low-cost semiconductor etching ion sources. As an important phenomenon in helicon plasma discharge, in-depth theoretical investigation on it may help us fully understand the physical mechanism behind the helicon plasma discharge.As a theoretical attempt to explore this phenomenon, which still lacks a unified explanation, we employ a plasma dielectric tensor model that better aligns with the actual discharge situation. Specifically, we use the general plasma dielectric tensor while accounting for the low temperature plasma kinetic effects and charged particle temperature anisotropy. Under typical helicon plasma discharge parameters, i.e. wave frequency ω/2π = 13.56 MHz, plasma column radius a = 3 cm, neutral gas pressure pAr = 0.5 mTorr, plasma density n0 = 1 × 1011 cm–3, and ratio of axial ion temperature to axial electron temperature Ti, z/Te, z = 0.1, we theoretically investigate the dispersion characteristics and wave number relations of Whistler waves, the mode coupling between helicon and Trivelpiece-Gould (TG) waves, and the power deposition properties of TG wave in low magnetic field circumstances. Analytical results suggest that under low electron temperature Te = 3 eV and low magnetic field (B0 < 48 G) circumstances, the high-order (|s| > 1) electron cyclotron harmonics can be ignored; the electron finite Larmor radius effect should be considered, while the ion finite Larmor radius effect can be ignored; the collision effect (collision damping) among particles completely changes the dispersion characteristics and wave number relations of the Whistler waves; for the helicon and TG waves, the value B0, mcs (where the mode coupling surface (MCS) is located) decreases with the increase of the axial wave number, meanwhile, the collision effect greatly affects the mode coupling characteristic of helicon and TG waves near the mode coupling surface; collision damping and Landau damping respectively dominate wave power deposition in different axial electron temperature ranges; in the typical helicon plasma electron temperature range, Te, z ∈ (3, 8) eV, the TG wave (m = 0, n = 1) mode dominates the power deposition; for the TG wave (m = 0, n = 1) mode, its power deposition peaks at the central axis of the plasma column, for low perpendicular electron temperature and low magnetic field, Landau damping dominates the power deposition, while under high perpendicular electron temperature and higher magnetic field, the collision damping dominates the power deposition.These conclusions not only further deepens our understanding of the low magnetic field density peak phenomenon at the theoretical level, but also provides new clues for fully revealing the mechanism of helicon discharge mechanism.
      通信作者: 李文秋, beiste@163.com
    • 基金项目: 中国科学院空天信息创新研究院高功率微波源与技术重点实验室(批准号: E3E2130901)资助的课题.
      Corresponding author: LI Wenqiu, beiste@163.com
    • Funds: Project supported by the Key Laboratory of High Power Microwave Sources and Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, China (Grant No. E3E2130901).
    [1]

    Degeling A W, Jung C O, Boswell R W, Ellingboe A R 1996 Phys. Plasmas 3 2788Google Scholar

    [2]

    Chen F F, Jiang X, Evans J D, Tynan G, Arnush D 1997 Plasma Phys. Controlled Fusion 39 A411Google Scholar

    [3]

    Braginskii O V, Vasil'Eva A N, Kovalev A S 1998 Plasma Phys. Rep. 24 762Google Scholar

    [4]

    Wang S J, Kwak J G, Kim C B, Kim S K 2003 Phys. Lett. A 313 278Google Scholar

    [5]

    Shinohara S, Soejima T 1998 Plasma Phys. Controlled Fusion 40 2081Google Scholar

    [6]

    Degeling A W, Borg G G, Boswell R W 2004 Phys. Plasmas 11 2144Google Scholar

    [7]

    Lafleur T, Charles C, Boswell R W 2010 Phys. Plasmas 17 073508Google Scholar

    [8]

    Chen F F 1992 J. Vac. Sci. Technol. , A 10 1389Google Scholar

    [9]

    Chen F F 2003 Phys. Plasmas 10 2586Google Scholar

    [10]

    Cho S 2006 Phys. Plasmas 13 033504Google Scholar

    [11]

    Sato G, Oohara W, Hatakeyama R 2007 Plasma Sources Sci. Technol. 16 734Google Scholar

    [12]

    Barada K K, Chattopadhyay P K, Ghosh J, Kumar S, Saxena Y C 2013 Phys. Plasmas 20 042119Google Scholar

    [13]

    Wang Y, Zhao G, Liu Z W, Ouyang J T, Chen Q 2015 Phys. Plasmas 22 093507Google Scholar

    [14]

    Cui R, Zhang T, He F, Zheng B, Ouyang J 2024 Plasma Sources Sci. Technol. 33 025021Google Scholar

    [15]

    Swanson D G 1989 Plasma Waves (New York: Academic Press) p155

    [16]

    李文秋, 唐彦娜, 刘雅琳, 王刚 2024 73 075202Google Scholar

    Li W Q, Tang Y N, Liu Y L, Wang G 2024 Acta Phys. Sin. 73 075202Google Scholar

    [17]

    Fried B D, Conte S D 2015 The Plasma Dispersion Function: the Hilbert Transform of the Gaussian (New York: Academic Press) p1

    [18]

    Huba J D 2016 NRL Plasma Formulary (Washington: Naval Research Laboratory) p34

    [19]

    Kamenski I V, Borg G G 1998 Comput. Phys. Commun. 113 10Google Scholar

    [20]

    李文秋, 唐彦娜, 刘雅琳, 王刚 2023 72 055202Google Scholar

    Li W Q, Tang Y N, Liu Y L, Wang G 2023 Acta Phys. Sin. 72 055202Google Scholar

    [21]

    Mouzouris Y, Scharer J E 1998 Phys. Plasmas 5 4253Google Scholar

    [22]

    Martin P, Olivares J, Maass F, Valero E 2018 Results Phys. 11 1028Google Scholar

    [23]

    Chen F F, Arnush D 1997 Phys. Plasmas 4 3411Google Scholar

    [24]

    Borg G, Boswell R 1998 Phys. Plasmas 5 564Google Scholar

    [25]

    Glaude V M M, Moisan M, Pantel R, Leprince P, Marec J 1980 J. Appl. Phys. 51 5693Google Scholar

    [26]

    Shamrai K P, Shinohara S 2001 Phys. Plasmas 8 4659Google Scholar

    [27]

    李文秋, 赵斌, 王刚, 相东 2020 69 115201Google Scholar

    Li W Q, Zhao B, Wang G, Xiang D 2020 Acta Phys. Sin. 69 115201Google Scholar

    [28]

    Loewenhardt P K, Blackwell B D, Boswell R W, Conway G D, Hamberger S M 1991 Phys. Rev. Lett. 67 2792Google Scholar

  • 图 1  等离子体柱横向截面示意图

    Fig. 1.  Cross section of plasma column.

    图 2  等离子体色散函数宗量随归一化电子回旋频率的对应关系

    Fig. 2.  Relation of the plasma dispersion function argument on normalized electron cyclotron frequency.

    图 3  有限拉莫尔半径效应因子随归一化电子回旋频率的变化

    Fig. 3.  Dependence of the finite Larmor radius effects on normalized electron cyclotron frequency.

    图 4  Whistler波的色散关系(ω - kz 空间) (a) 碰撞频率$ {\nu _\ell } = 0 $; (b) 碰撞频率$ {\nu _\ell } \ne 0 $

    Fig. 4.  Dispersion relation of Whistler waves (ω - kz space): (a) collisional frequency $ {\nu _\ell } = 0 $; (b) collisional frequency $ {\nu _\ell } \ne 0 $.

    图 5  Whistler波的色散关系(k-kz 空间)

    Fig. 5.  Dispersion relation of the whistler waves (k-kz space)

    图 6  给定轴向波数时螺旋波与TG波横向波数的实部随轴向静磁场的变化 (a) $ {k_z} = 0.2{\text{ c}}{{\text{m}}^{ - 1}} $; (b)$ {k_z} = 0.25{\text{ c}}{{\text{m}}^{ - 1}} $

    Fig. 6.  Dependence of real part of the perpendicular wave number of helicon and TG waves on axial static magnetic field for given axial wave number: (a) Axial wave number $ {k_z} = 0.2{\text{ c}}{{\text{m}}^{ - 1}} $; (b) axial wave number $ {k_z} = 0.25{\text{ c}}{{\text{m}}^{ - 1}} $.

    图 7  TG波(m = 0, n = 1)模的碰撞阻尼频率和朗道阻尼频率

    Fig. 7.  Collision damping frequency and Landua damping frequency of the TG wave (m = 0, n = 1) mode.

    图 8  TG波$m = 0$角向模对应的前三个径向模的功率沉积比较

    Fig. 8.  Comparison of power deposition for the first three radial modes of the m = 0 TG wave.

    图 9  TG波(m = 0, n = 1)模归一化功率沉积在(r, Te, z)参量空间的分布

    Fig. 9.  Normalized power deposition of the TG wave (m = 0, n = 1) mode in the (r, Te, z) parameter space.

    图 10  TG波(m = 0, n = 1)模归一化功率沉积在(ω/ωce, χe)参量空间的分布

    Fig. 10.  Normalized power deposition of the TG wave (m = 0, n = 1) mode in the (ω/ωce, χe) parameter space.

    Baidu
  • [1]

    Degeling A W, Jung C O, Boswell R W, Ellingboe A R 1996 Phys. Plasmas 3 2788Google Scholar

    [2]

    Chen F F, Jiang X, Evans J D, Tynan G, Arnush D 1997 Plasma Phys. Controlled Fusion 39 A411Google Scholar

    [3]

    Braginskii O V, Vasil'Eva A N, Kovalev A S 1998 Plasma Phys. Rep. 24 762Google Scholar

    [4]

    Wang S J, Kwak J G, Kim C B, Kim S K 2003 Phys. Lett. A 313 278Google Scholar

    [5]

    Shinohara S, Soejima T 1998 Plasma Phys. Controlled Fusion 40 2081Google Scholar

    [6]

    Degeling A W, Borg G G, Boswell R W 2004 Phys. Plasmas 11 2144Google Scholar

    [7]

    Lafleur T, Charles C, Boswell R W 2010 Phys. Plasmas 17 073508Google Scholar

    [8]

    Chen F F 1992 J. Vac. Sci. Technol. , A 10 1389Google Scholar

    [9]

    Chen F F 2003 Phys. Plasmas 10 2586Google Scholar

    [10]

    Cho S 2006 Phys. Plasmas 13 033504Google Scholar

    [11]

    Sato G, Oohara W, Hatakeyama R 2007 Plasma Sources Sci. Technol. 16 734Google Scholar

    [12]

    Barada K K, Chattopadhyay P K, Ghosh J, Kumar S, Saxena Y C 2013 Phys. Plasmas 20 042119Google Scholar

    [13]

    Wang Y, Zhao G, Liu Z W, Ouyang J T, Chen Q 2015 Phys. Plasmas 22 093507Google Scholar

    [14]

    Cui R, Zhang T, He F, Zheng B, Ouyang J 2024 Plasma Sources Sci. Technol. 33 025021Google Scholar

    [15]

    Swanson D G 1989 Plasma Waves (New York: Academic Press) p155

    [16]

    李文秋, 唐彦娜, 刘雅琳, 王刚 2024 73 075202Google Scholar

    Li W Q, Tang Y N, Liu Y L, Wang G 2024 Acta Phys. Sin. 73 075202Google Scholar

    [17]

    Fried B D, Conte S D 2015 The Plasma Dispersion Function: the Hilbert Transform of the Gaussian (New York: Academic Press) p1

    [18]

    Huba J D 2016 NRL Plasma Formulary (Washington: Naval Research Laboratory) p34

    [19]

    Kamenski I V, Borg G G 1998 Comput. Phys. Commun. 113 10Google Scholar

    [20]

    李文秋, 唐彦娜, 刘雅琳, 王刚 2023 72 055202Google Scholar

    Li W Q, Tang Y N, Liu Y L, Wang G 2023 Acta Phys. Sin. 72 055202Google Scholar

    [21]

    Mouzouris Y, Scharer J E 1998 Phys. Plasmas 5 4253Google Scholar

    [22]

    Martin P, Olivares J, Maass F, Valero E 2018 Results Phys. 11 1028Google Scholar

    [23]

    Chen F F, Arnush D 1997 Phys. Plasmas 4 3411Google Scholar

    [24]

    Borg G, Boswell R 1998 Phys. Plasmas 5 564Google Scholar

    [25]

    Glaude V M M, Moisan M, Pantel R, Leprince P, Marec J 1980 J. Appl. Phys. 51 5693Google Scholar

    [26]

    Shamrai K P, Shinohara S 2001 Phys. Plasmas 8 4659Google Scholar

    [27]

    李文秋, 赵斌, 王刚, 相东 2020 69 115201Google Scholar

    Li W Q, Zhao B, Wang G, Xiang D 2020 Acta Phys. Sin. 69 115201Google Scholar

    [28]

    Loewenhardt P K, Blackwell B D, Boswell R W, Conway G D, Hamberger S M 1991 Phys. Rev. Lett. 67 2792Google Scholar

  • [1] 杨雨森, 王林, 苟德梽, 唐正明. 等离子体-光子晶体阵列结构波导模型的电磁特性.  , 2024, 73(24): 245201. doi: 10.7498/aps.73.20241300
    [2] 孟令辉, 任洪波, 刘建晓. 高温等离子体中太赫兹波的传输特性.  , 2018, 67(17): 174101. doi: 10.7498/aps.67.20180647
    [3] 马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞. S-Ka频段电磁波在等离子体中传输特性的实验研究.  , 2018, 67(2): 025201. doi: 10.7498/aps.67.20170845
    [4] 刘永强, 孔令宝, 杜朝海, 刘濮鲲. 基于类表面等离子体激元的矩形金属光栅色散特性的研究.  , 2015, 64(17): 174102. doi: 10.7498/aps.64.174102
    [5] 何昉明, 罗积润, 朱敏, 郭炜. Chodorow型耦合腔慢波结构色散特性和耦合阻抗理论分析.  , 2013, 62(17): 174101. doi: 10.7498/aps.62.174101
    [6] 史宗君, 杨梓强, 侯钧, 兰峰, 梁正. 金属柱平板慢波系统高频特性研究.  , 2011, 60(4): 046803. doi: 10.7498/aps.60.046803
    [7] 杨涓, 龙春伟, 陈茂林, 许映桥, 谭小群. 外加磁场微波等离子体喷流对平面电磁波衰减的实验研究.  , 2009, 58(7): 4793-4798. doi: 10.7498/aps.58.4793
    [8] 周磊, 唐昌建. 不均匀等离子体中电磁波与Langmuir波的相互作用.  , 2009, 58(12): 8254-8259. doi: 10.7498/aps.58.8254
    [9] 路志刚, 魏彦玉, 宫玉彬, 吴周淼, 王文祥. 具有任意槽的矩形波导栅慢波结构高频特性的研究.  , 2007, 56(6): 3318-3323. doi: 10.7498/aps.56.3318
    [10] 杨 涓, 朱 冰, 毛根旺, 许映乔, 刘俊平. 真空中不同极化电磁波在微波等离子体喷流中的衰减特性实验研究.  , 2007, 56(12): 7120-7126. doi: 10.7498/aps.56.7120
    [11] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析.  , 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [12] 朱 冰, 杨 涓, 黄雪刚, 毛根旺, 刘俊平. 真空环境中等离子体喷流对反射电磁波衰减的实验研究.  , 2006, 55(5): 2352-2356. doi: 10.7498/aps.55.2352
    [13] 杨宏伟, 陈如山, 张 云. 等离子体的SO-FDTD算法和对电磁波反射系数的计算分析.  , 2006, 55(7): 3464-3469. doi: 10.7498/aps.55.3464
    [14] 杨 涓, 朱良明, 苏维仪, 毛根旺. 电磁波在磁化等离子体表面的功率反射系数计算研究.  , 2005, 54(7): 3236-3240. doi: 10.7498/aps.54.3236
    [15] 张 勇, 莫元龙, 徐锐敏, 延 波, 谢小强. 等离子体填充盘荷波导高频特性分析.  , 2005, 54(11): 5239-5245. doi: 10.7498/aps.54.5239
    [16] 宋法伦, 曹金祥, 王 舸. 弱电离等离子体对电磁波吸收的物理模型和数值求解.  , 2005, 54(2): 807-811. doi: 10.7498/aps.54.807
    [17] 岳玲娜, 王文祥, 魏彦玉, 宫玉彬. 同轴任意槽形周期圆波导慢波结构色散特性的研究.  , 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
    [18] 宋法伦, 曹金祥, 王舸. 电磁波在径向非均匀球对称等离子体中的衰减.  , 2004, 53(4): 1110-1115. doi: 10.7498/aps.53.1110
    [19] 苏纬仪, 杨 涓, 魏 昆, 毛根旺, 何洪庆. 金属平板前等离子体的电磁波功率反射系数计算分析.  , 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [20] 刘明海, 胡希伟, 江中和, 刘克富, 辜承林, 潘垣. 电磁波在大气层人造等离子体中的衰减特性.  , 2002, 51(6): 1317-1320. doi: 10.7498/aps.51.1317
计量
  • 文章访问数:  368
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-21
  • 修回日期:  2025-05-19
  • 上网日期:  2025-06-06
  • 刊出日期:  2025-08-05

/

返回文章
返回
Baidu
map