搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维准周期缺陷原子晶格中非互易光反射

徐琼怡 张津 郑怡婷 严冬 张焓笑 杨红

引用本文:
Citation:

一维准周期缺陷原子晶格中非互易光反射

徐琼怡, 张津, 郑怡婷, 严冬, 张焓笑, 杨红

Nonreciprocal reflection in one-dimensional quasi-periodic defective atomic lattice

XU Qiongyi, ZHANG Jin, ZHENG Yiting, YAN Dong, ZHANG Hanxiao, YANG Hong
cstr: 32037.14.aps.74.20250270
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 光学非互易性因其能够有效地用于全光二极管、隔离器等新型光子器件的设计, 近年来相关研究备受关注. 本研究组在2024年利用晶格缺陷打破极化率空间对称性实现了非互易光反射, 该工作中缺陷是由固定数量空晶格周期性调制的. 为了进一步展开缺陷原子晶格中非互易光传播特性的研究, 我们提出用斐波那契数列调控空晶格的排布规律, 构成准周期缺陷原子晶格系统, 实现了探测光左右反射非互易的操控. 分析了单个准周期中满晶格数量、斐波那契数列和准周期数对非互易反射的优化过程以及产生影响的物理实质, 并讨论了耦合场失谐对非互易频率域和带宽的调制. 这些结果为宽频、对比度高的非互易光反射调控提供了更多的自由度, 在量子计算和信息处理领域具有潜在的应用.
    In order to further investigate the non-reciprocity of light propagation in the defective atomic lattices, and due to its effective application in designing novel photonic devices, such as all-optical diodes and isolators, which are powerful tools for information processing and quantum simulation, we innovatively propose to use the Fibonacci sequence to modulate the arrangement of empty lattice cells that form a quasi periodic defective atomic lattices. In the electromagnetically induced transparency window, the probe light is almost not absorbed under the control of a strong coupling field (see Fig. 1). The numerical simulation indicates that a wide nonreciprocal reflection band can be achieved by modulating the number of filled lattice cells, Fibonacci sequence, the period number in a single quasi period (see Fig. 2). These results provide more degrees of freedom for regulating nonreciprocal reflection with wide bandwidth and high contrast, and have potential applications in quantum computing and information processing.
      通信作者: 杨红, yang_hongbj@126.com
    • 基金项目: 国家自然科学基金(批准号: 12204137)和海南省研究生创新科研课题(批准号: Qhys2023-394)资助的课题.
      Corresponding author: YANG Hong, yang_hongbj@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12204137) and the Hainan Province Graduate Innovation Research Project, China (Grant No. Qhys2023-394).
    [1]

    White A D, Ahn G H, Gasse K V, Yang K Y, Chang L, Bowers J E, Vučković J 2023 Nat. Photonics 17 143Google Scholar

    [2]

    Prabu K, Nasre D 2019 Plasmonics 14 1261Google Scholar

    [3]

    Xia K Y, Nori F, Xiao M 2018 Phys. Rev. Lett. 121 203602Google Scholar

    [4]

    Tian H, Liu J Q, Siddharth A, Wang R N, Blésin T, He J J, Kippenberg T J, Bhave S A 2021 Nat. Photonics 15 828Google Scholar

    [5]

    Chan E H W 2014 Opt. Commun. 324 127Google Scholar

    [6]

    Litinskaya M, Shapiro E A 2015 Phys. Rev. A 91 033802Google Scholar

    [7]

    Shen H Z, Wang Q, Wang J, Yi X X 2020 Phys. Rev. A 101 013826Google Scholar

    [8]

    Wu J, Wang Z M, Zhai H, Shi Z X, Wu X H, Wu F 2021 Opt. Mater. Express 11 4058Google Scholar

    [9]

    Wang Z Y, Qian J, Wang Y P, Li J, You J Q 2023 Appl. Phys. Lett. 123 153904Google Scholar

    [10]

    Chakraborty S, Das C 2023 Phys. Rev. A 108 063704Google Scholar

    [11]

    Wang Y M, Xiong W, Xu Z Y, Zhang G Q, You J Q 2022 Sci. China-Phys. , Mech. Astron. 65 260314Google Scholar

    [12]

    He X W, Wang Z Y, Han X, Zhang S, Wang H F 2023 Opt. Express 31 43506Google Scholar

    [13]

    Yang Y, Guan B, Zhang C L, Liu L C, Liu K 2020 Optoelectron. Sci. Mater. 11606 74

    [14]

    Kim M K 2015 Opt. Express 23 2040Google Scholar

    [15]

    Kawaguchi Y, Alù A, Khanikaev A B 2022 Opt. Mater. Express 12 1453Google Scholar

    [16]

    Sounas D L, Alù A 2017 Nat. Photonics 11 774Google Scholar

    [17]

    Fleury R, Sounas D L, Alù A 2018 J. Opt. 20 034007Google Scholar

    [18]

    Cardin A E, Silva S R, Vardeny S R, Padilla W J, Saxena A, Taylor A J, Kort-Kamp W J M, Chen H T, Dalvit D A R, Azad A K 2020 Nat. Commun. 11 1469Google Scholar

    [19]

    Kittlaus E A, Otterstrom N T, Kharel P, Gertler S, Rakich P T 2018 Nat. Photonics 12 613Google Scholar

    [20]

    Sohn D B, Kim S, Bahl G 2018 Nat. Photonics 12 91Google Scholar

    [21]

    Rodriguez S R K, Goblot V, Zambon N C, Amo A, Bloch J 2019 Phys. Rev. A 99 013851Google Scholar

    [22]

    Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, Dong C H 2016 Nat. Photonics 10 657Google Scholar

    [23]

    Ruesink F, Miri M A, Alù A, Verhagen E 2016 Nat. Commun. 7 13662Google Scholar

    [24]

    Barzanjeh S, Wulf M, Peruzzo M, Kalaee M, Dieterle P B , Painter O, Fink J M 2017 Nat. Commun. 8 953Google Scholar

    [25]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [26]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604Google Scholar

    [27]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Xia K Y, Gong J B, Gong S Q 2018 Nat. Photonics 12 744Google Scholar

    [28]

    Lin G W, Zhang S C, Hu Y Q, Niu Y P, Gong J B, Gong S Q 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [29]

    Zhang Y, Wu J H, Artoni M, La Rocca G C 2021 Opt. Express 29 5890Google Scholar

    [30]

    Guo T J, Argyropoulos C 2022 Phys. Rev. B 106 235418Google Scholar

    [31]

    Zheng D D, Zhang Y, Liu Y M, Zhang X J, Wu J H 2023 Phys. Rev. A 107 013704Google Scholar

    [32]

    Horsley S A R, Artoni M, La Rocca G C 2015 Nat. Photonics 9 436Google Scholar

    [33]

    Pei X S, Zhang H X, Pan M M, Geng Y, Li T M, Yang H 2023 Opt. Express 31 14694Google Scholar

    [34]

    Peng P S, Thapa G, Zhou J F, Talbayev D 2023 Optica 10 155Google Scholar

    [35]

    Guddala S, Kawaguchi Y, Komissarenko F, Kiriushechkina S, Vakulenko A, Chen K, Alù A, Menon V M, Khanikaev A B 2021 Nat. Commun. 12 3746Google Scholar

    [36]

    Gao W T, Yang C W, Tan Y T, Ren J 2022 Appl. Phys. Lett. 121 071702Google Scholar

    [37]

    Chamanara N, Taravati S, Deck-Léger Z L, Caloz C 2017 Phys. Rev. B 96 155409Google Scholar

    [38]

    Hack S A, van der Vegt J J W, Vos W L 2019 Phys. Rev. B 99 115308Google Scholar

    [39]

    Yoon T, Bajcsy M 2019 Phys. Rev. A 99 023415Google Scholar

    [40]

    Yang H, Zhang T G, Zhang Y, Wu J H 2020 Phys. Rev. A 101 053856Google Scholar

    [41]

    Wu J H, Artoni M, La Rocca G C 2017 Phys. Rev. A 95 053862Google Scholar

    [42]

    Artoni M, La Rocca G C, Bassani F 2005 Phys. Rev. E 72 046604Google Scholar

    [43]

    Li T M, Wang M H, Yin C P, Wu J H, Yang H 2021 Opt. Express 29 31767Google Scholar

    [44]

    Yang H, Yang L, Wang X C, Cui C L, Zhang Y, Wu J H 2013 Phys. Rev. A 88 063832Google Scholar

    [45]

    Wu J H, Artoni M, La Rocca G C 2015 Phys. Rev. A 91 033811Google Scholar

    [46]

    Chaung Y L, Shamsi A, Abbas M, Ziauddin 2020 Opt. Express 28 1701Google Scholar

    [47]

    Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L, Wu J H 2015 Phys. Rev. A 92 053859Google Scholar

    [48]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar

    [49]

    Wang C Q, Jiang X F, Zhao G M, Zhang M Z, Hsu C W, Peng B, Stone A D, Jiang L, Yang L 2020 Nat. Phys. 16 334Google Scholar

    [50]

    Finkelstein R, Bali S, Firstenberg O, Novikova I 2023 New J. Phys. 25 035001Google Scholar

    [51]

    刘建基, 刘甲琛, 张国权 2023 72 094201Google Scholar

    Liu J J, Liu J C, Zhang G Q 2023 Acta Phys. Sin. 72 094201Google Scholar

    [52]

    Li T M, Yang H, Wang M H, Yin C P, Zhang T G, Zhang Y 2024 Phys. Rev. Res. 6 023122Google Scholar

    [53]

    Yuan J P, Wu C H, Wang L R, Chen G, Jia S T 2019 Opt. Lett. 44 4123Google Scholar

    [54]

    Yuan J P, Zhang H F, Wu C H, Wang L R, Xiao L T, Jia S T 2021 Opt. Lett. 46 4184Google Scholar

    [55]

    Yuan J P, Zhang H F, Wu C H, Chen G, Wang L R, Xiao L T, Jia S T 2023 Laser Photonics Rev. 17 2200667Google Scholar

    [56]

    Schilke A, Zimmermann C, Guerin W 2012 Phys. Rev. A 86 023809.Google Scholar

    [57]

    Kuraptsev A S, Sokolov I M 2015 Phys. Rev. A 91 053822Google Scholar

    [58]

    Artoni M, La Rocca G C 2006 Phys. Rev. Lett. 96 073905Google Scholar

    [59]

    Zhang Y, Xue Y, Wang G, Cui C L, Wang R, Wu J H 2011 Opt. Express 19 2111Google Scholar

  • 图 1  (a)三能级Lambda型相干原子系统; (b)一维准周期缺陷原子晶格与相干光场的作用; (c)一个满晶格周期中探测场平均极化率实部和虚部随失谐的变化及其与$ - 2\varDelta {\lambda _{{\mathrm{Lat}}}}/{\lambda _{{\mathrm{Lat}}}} \approx 0.0023 $的交点

    Fig. 1.  (a) Three-level Lambda model coherent atomic system; (b) interaction between 1D quasi-periodic atomic lattice and coherent optical field; (c) the real and imaginary parts of average susceptibility in one filled lattice cell v.s. probe detuning, and the intersection with $ - 2\varDelta {\lambda _{{\text{Lat}}}}/{\lambda _{{\text{Lat}}}} \approx 0.0023 $.

    图 2  (a), (b)展示了左右反射率$ {R_{\mathrm{l}}}_{, {\mathrm{r}}} $随失谐$ {\varDelta _{\mathrm{p}}} $的变化, 分别对应$ n \in \left[ {2, 16} \right] $和$ n \in \left[ {2, 21} \right] $; (c), (d)展示了左右反射率$ {R_{\mathrm{l}}}_{, {\mathrm{r}}} $随失谐$ {\varDelta _{\mathrm{p}}} $和斐波那契数列数量$ b(n) $中最大n值的变化. 其他参数: $ {{{N}}_0} = 7 \times {10^{11}}{\text{ }}{\mathrm{c{m}}^{ - 3}} $, $ \eta = 5 $, $ a = 40 $, $ c = 1 $, $ d = 1500 $, $ {\gamma _{31}} = $$ 6{\text{ MHz}} $, $ {\gamma _{21}} = 0.001{\text{ MHz}} $, $ {\varDelta _{\mathrm{c}}} = 15{\text{ MHz}} $, $ {\varOmega _{\mathrm{c}}} = 36{\text{ MHz}} $, $ {\lambda _{{\mathrm{Lat0}}}} = 781{\text{ nm}} $, $ {\lambda _{\mathrm{p}}} = 780.24{\text{ nm}} $, $ \varDelta {\lambda _{{\mathrm{Lat}}}} = - 0.9{\text{ nm}} $, $ {\boldsymbol d} _{13} = 1.0357 \times $$ {10^{ - 29}}{\text{ }}{\mathrm{C}}{ \cdot} {\mathrm{m}} $

    Fig. 2.  (a) $ n \in \left[ {2, 16} \right] $ and (b) $ n \in \left[ {2, 21} \right] $ shows the reflectivities $ {R_{\mathrm{l}}}_{, {\mathrm{r}}} $ v.s. detuning $ {\varDelta _{\mathrm{p}}} $; (c), (d) the reflectivities $ {R_{\mathrm{l}}}_{, {\mathrm{r}}} $ v.s. the number of dissonance and Fibonacci series $ b(n) $ and detuning $ {\varDelta _{\mathrm{p}}} $, respectively. Other relevant parameters: $ {{{N}}_0} = 7 \times {10^{11}}{\text{ }}{\mathrm{c{m}}^{ - 3}} $, $ \eta = 5 $, $ a = 40 $, $ c = 1 $, $ d = 1500 $, $ {\gamma _{31}} = 6{\text{ MHz}} $, $ {\gamma _{21}} = 0.001{\text{ MHz}} $, $ {\varDelta _{\mathrm{c}}} = 15 \;{\mathrm{MHz}} $, $ {\varOmega _{\mathrm{c}}} = 36{\text{ MHz}} $, $ {\lambda _{{\mathrm{Lat0}}}} = 781{\text{ nm}} $, $ {\lambda _{\mathrm{p}}} = $$ 780.24{\text{ nm}} $, $ \varDelta {\lambda _{{\mathrm{Lat}}}} = - 0.9{\text{ nm}} $, ${\boldsymbol d _{13}}= 1.0357 \times {10^{ - 29}}{\text{ }}{\mathrm{C}} {\cdot} {\mathrm{m}} $.

    图 3  左右反射率$ {R_{\mathrm{l}}}_{, r} $随失谐$ {\varDelta _{\mathrm{p}}} $的变化(a) $ n \in \left[ {2, 7} \right] $; (b) $ n \in \left[ {8, 13} \right] $; (c) $ n \in \left[ {8, 17} \right] $. 相关参数: $ c = 10 $, 其他参数如图2所示

    Fig. 3.  The reflectivities $ {R_{\mathrm{l}}}_{, r} $ v.s. detuning $ {\varDelta _{\mathrm{p}}} $: (a) $ n \in $$ \left[ {2, 7} \right] $; (b) $ n \in \left[ {8, 13} \right] $; (c) $ n \in \left[ {8, 17} \right] $. Here $ c = 10 $, other parameters are shown in Fig 2.

    图 4  左右反射率$ {R_{\mathrm{l}}}_{, r} $和反射对比度$ {C_{{R}}} $随失谐$ {\varDelta _{\mathrm{p}}} $的变化 (a) $ a = 30 $; (b) $ a = 20 $; (c) $ a = 10 $. 相关参数: $ n \in $$ \left[ {8, 17} \right] $, $ c = 10 $, 其他参数如图2所示

    Fig. 4.  The reflectivities $ {R_{\mathrm{l}}}_{, r} $ and the reflection contrast $ {C_{{R}}} $ v.s. detuning $ {\varDelta _{\mathrm{p}}} $: (a) $ a = 30 $; (b) $ a = 20 $; (c) $ a = 10 $. Here $ n \in \left[ {8, 17} \right] $, $ c = 10 $, other parameters are shown in Fig 2.

    图 5  左右反射率$ {R_{\mathrm{l}}}_{, r} $和反射对比度$ {C_{{R}}} $随失谐$ {\varDelta _{\mathrm{p}}} $的变化 (a) $ c = 20 $; (b) $ c = 25 $; (c) $ c = 30 $. 相关参数: $ n \in $$ \left[ {8, 17} \right] $, $ a = 20 $, 其他参数如图2所示

    Fig. 5.  The reflectivities $ {R_{\mathrm{l}}}_{, r} $ and the reflection contrast $ {C_{{R}}} $ v.s. detuning $ {\varDelta _{\mathrm{p}}} $: (a) $ c = 20 $; (b) $ c = 25 $; (c) $ c = 30 $. Here $ n \in \left[ {8, 17} \right] $, $ a = 20 $, other parameters are shown in Fig 2.

    图 6  (a)左反射率$ {R_{\mathrm{l}}} $和(b)右反射率$ {R_{\mathrm{r}}} $随探测场失谐$ {\varDelta _{\mathrm{p}}} $和强耦合场失谐$ {\varDelta _{\mathrm{c}}} $的变化. 相关参数: $ n \in \left[ {8, 17} \right] $, $ a = $$ 20 $, $ c = 30 $, 其他参数如图2所示

    Fig. 6.  (a) The left reflectivity $ {R_{\mathrm{l}}} $ and (b) the right reflectivity $ {R_{\mathrm{r}}} $ v.s. the probe detuning $ {\varDelta _{\mathrm{p}}} $ and the strong coupling field detuning $ {\varDelta _{\mathrm{c}}} $. Here $ n \in \left[ {8, 17} \right] $, $ a = 20 $, $ c = 30 $, other parameters are shown in Fig 2.

    Baidu
  • [1]

    White A D, Ahn G H, Gasse K V, Yang K Y, Chang L, Bowers J E, Vučković J 2023 Nat. Photonics 17 143Google Scholar

    [2]

    Prabu K, Nasre D 2019 Plasmonics 14 1261Google Scholar

    [3]

    Xia K Y, Nori F, Xiao M 2018 Phys. Rev. Lett. 121 203602Google Scholar

    [4]

    Tian H, Liu J Q, Siddharth A, Wang R N, Blésin T, He J J, Kippenberg T J, Bhave S A 2021 Nat. Photonics 15 828Google Scholar

    [5]

    Chan E H W 2014 Opt. Commun. 324 127Google Scholar

    [6]

    Litinskaya M, Shapiro E A 2015 Phys. Rev. A 91 033802Google Scholar

    [7]

    Shen H Z, Wang Q, Wang J, Yi X X 2020 Phys. Rev. A 101 013826Google Scholar

    [8]

    Wu J, Wang Z M, Zhai H, Shi Z X, Wu X H, Wu F 2021 Opt. Mater. Express 11 4058Google Scholar

    [9]

    Wang Z Y, Qian J, Wang Y P, Li J, You J Q 2023 Appl. Phys. Lett. 123 153904Google Scholar

    [10]

    Chakraborty S, Das C 2023 Phys. Rev. A 108 063704Google Scholar

    [11]

    Wang Y M, Xiong W, Xu Z Y, Zhang G Q, You J Q 2022 Sci. China-Phys. , Mech. Astron. 65 260314Google Scholar

    [12]

    He X W, Wang Z Y, Han X, Zhang S, Wang H F 2023 Opt. Express 31 43506Google Scholar

    [13]

    Yang Y, Guan B, Zhang C L, Liu L C, Liu K 2020 Optoelectron. Sci. Mater. 11606 74

    [14]

    Kim M K 2015 Opt. Express 23 2040Google Scholar

    [15]

    Kawaguchi Y, Alù A, Khanikaev A B 2022 Opt. Mater. Express 12 1453Google Scholar

    [16]

    Sounas D L, Alù A 2017 Nat. Photonics 11 774Google Scholar

    [17]

    Fleury R, Sounas D L, Alù A 2018 J. Opt. 20 034007Google Scholar

    [18]

    Cardin A E, Silva S R, Vardeny S R, Padilla W J, Saxena A, Taylor A J, Kort-Kamp W J M, Chen H T, Dalvit D A R, Azad A K 2020 Nat. Commun. 11 1469Google Scholar

    [19]

    Kittlaus E A, Otterstrom N T, Kharel P, Gertler S, Rakich P T 2018 Nat. Photonics 12 613Google Scholar

    [20]

    Sohn D B, Kim S, Bahl G 2018 Nat. Photonics 12 91Google Scholar

    [21]

    Rodriguez S R K, Goblot V, Zambon N C, Amo A, Bloch J 2019 Phys. Rev. A 99 013851Google Scholar

    [22]

    Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, Dong C H 2016 Nat. Photonics 10 657Google Scholar

    [23]

    Ruesink F, Miri M A, Alù A, Verhagen E 2016 Nat. Commun. 7 13662Google Scholar

    [24]

    Barzanjeh S, Wulf M, Peruzzo M, Kalaee M, Dieterle P B , Painter O, Fink J M 2017 Nat. Commun. 8 953Google Scholar

    [25]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [26]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604Google Scholar

    [27]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Xia K Y, Gong J B, Gong S Q 2018 Nat. Photonics 12 744Google Scholar

    [28]

    Lin G W, Zhang S C, Hu Y Q, Niu Y P, Gong J B, Gong S Q 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [29]

    Zhang Y, Wu J H, Artoni M, La Rocca G C 2021 Opt. Express 29 5890Google Scholar

    [30]

    Guo T J, Argyropoulos C 2022 Phys. Rev. B 106 235418Google Scholar

    [31]

    Zheng D D, Zhang Y, Liu Y M, Zhang X J, Wu J H 2023 Phys. Rev. A 107 013704Google Scholar

    [32]

    Horsley S A R, Artoni M, La Rocca G C 2015 Nat. Photonics 9 436Google Scholar

    [33]

    Pei X S, Zhang H X, Pan M M, Geng Y, Li T M, Yang H 2023 Opt. Express 31 14694Google Scholar

    [34]

    Peng P S, Thapa G, Zhou J F, Talbayev D 2023 Optica 10 155Google Scholar

    [35]

    Guddala S, Kawaguchi Y, Komissarenko F, Kiriushechkina S, Vakulenko A, Chen K, Alù A, Menon V M, Khanikaev A B 2021 Nat. Commun. 12 3746Google Scholar

    [36]

    Gao W T, Yang C W, Tan Y T, Ren J 2022 Appl. Phys. Lett. 121 071702Google Scholar

    [37]

    Chamanara N, Taravati S, Deck-Léger Z L, Caloz C 2017 Phys. Rev. B 96 155409Google Scholar

    [38]

    Hack S A, van der Vegt J J W, Vos W L 2019 Phys. Rev. B 99 115308Google Scholar

    [39]

    Yoon T, Bajcsy M 2019 Phys. Rev. A 99 023415Google Scholar

    [40]

    Yang H, Zhang T G, Zhang Y, Wu J H 2020 Phys. Rev. A 101 053856Google Scholar

    [41]

    Wu J H, Artoni M, La Rocca G C 2017 Phys. Rev. A 95 053862Google Scholar

    [42]

    Artoni M, La Rocca G C, Bassani F 2005 Phys. Rev. E 72 046604Google Scholar

    [43]

    Li T M, Wang M H, Yin C P, Wu J H, Yang H 2021 Opt. Express 29 31767Google Scholar

    [44]

    Yang H, Yang L, Wang X C, Cui C L, Zhang Y, Wu J H 2013 Phys. Rev. A 88 063832Google Scholar

    [45]

    Wu J H, Artoni M, La Rocca G C 2015 Phys. Rev. A 91 033811Google Scholar

    [46]

    Chaung Y L, Shamsi A, Abbas M, Ziauddin 2020 Opt. Express 28 1701Google Scholar

    [47]

    Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L, Wu J H 2015 Phys. Rev. A 92 053859Google Scholar

    [48]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar

    [49]

    Wang C Q, Jiang X F, Zhao G M, Zhang M Z, Hsu C W, Peng B, Stone A D, Jiang L, Yang L 2020 Nat. Phys. 16 334Google Scholar

    [50]

    Finkelstein R, Bali S, Firstenberg O, Novikova I 2023 New J. Phys. 25 035001Google Scholar

    [51]

    刘建基, 刘甲琛, 张国权 2023 72 094201Google Scholar

    Liu J J, Liu J C, Zhang G Q 2023 Acta Phys. Sin. 72 094201Google Scholar

    [52]

    Li T M, Yang H, Wang M H, Yin C P, Zhang T G, Zhang Y 2024 Phys. Rev. Res. 6 023122Google Scholar

    [53]

    Yuan J P, Wu C H, Wang L R, Chen G, Jia S T 2019 Opt. Lett. 44 4123Google Scholar

    [54]

    Yuan J P, Zhang H F, Wu C H, Wang L R, Xiao L T, Jia S T 2021 Opt. Lett. 46 4184Google Scholar

    [55]

    Yuan J P, Zhang H F, Wu C H, Chen G, Wang L R, Xiao L T, Jia S T 2023 Laser Photonics Rev. 17 2200667Google Scholar

    [56]

    Schilke A, Zimmermann C, Guerin W 2012 Phys. Rev. A 86 023809.Google Scholar

    [57]

    Kuraptsev A S, Sokolov I M 2015 Phys. Rev. A 91 053822Google Scholar

    [58]

    Artoni M, La Rocca G C 2006 Phys. Rev. Lett. 96 073905Google Scholar

    [59]

    Zhang Y, Xue Y, Wang G, Cui C L, Wang R, Wu J H 2011 Opt. Express 19 2111Google Scholar

  • [1] 李若楠, 薛晶晶, 宋丹, 李鑫, 王丹, 杨保东, 周海涛. 非互易-互易放大转换下光学轨道角动量的转移.  , 2025, 74(4): 044203. doi: 10.7498/aps.74.20241565
    [2] 丁肖冠, 赵开君, 谢耀禹, 陈志鹏, 陈忠勇, 杨州军, 高丽, 丁永华, 温思宇, 胡莹欣. J-TEXT托卡马克锯齿振荡期间湍流传播和对称性破缺对边缘剪切流的影响.  , 2025, 74(4): 045201. doi: 10.7498/aps.74.20241364
    [3] 张慧玲, 谢中柱, 郝佳瑞, 房勇. 室温下铯原子体系光学非互易调控实验研究.  , 2025, 74(6): 064206. doi: 10.7498/aps.74.20241463
    [4] 王子尧, 陈福家, 郗翔, 高振, 杨怡豪. 非互易拓扑光子学.  , 2024, 73(6): 064201. doi: 10.7498/aps.73.20231850
    [5] 杨硕颖, 殷嘉鑫. 时间反演对称性破缺的笼目超导输运现象.  , 2024, 73(15): 150301. doi: 10.7498/aps.73.20240917
    [6] 李观荣, 郑怡婷, 徐琼怡, 裴笑山, 耿玥, 严冬, 杨红. 闭合回路相干增益原子系统中完美非互易反射光放大.  , 2024, 73(12): 126401. doi: 10.7498/aps.73.20240347
    [7] 曾超, 毛一屹, 吴骥宙, 苑涛, 戴汉宁, 陈宇翱. 一维超冷原子动量光晶格中的手征对称性破缺拓扑相.  , 2024, 73(4): 040301. doi: 10.7498/aps.73.20231566
    [8] 王恩权, 陈浩, 杨毅, 隆正文, HassanabadiHassan. 洛伦兹对称破缺框架下的广义克莱因-戈尔登谐振子.  , 2022, 71(6): 060301. doi: 10.7498/aps.71.20211733
    [9] 杨树政, 林恺. 洛仑兹破缺标量场的霍金隧穿辐射.  , 2019, 68(6): 060401. doi: 10.7498/aps.68.20182050
    [10] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模.  , 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [11] 耿虎, 计青山, 张存喜, 王瑞. 缀饰格子中时间反演对称破缺的量子自旋霍尔效应.  , 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [12] 周骏, 任海东, 冯亚萍. 强非局域光晶格中空间孤子的脉动传播.  , 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [13] 张莹, 雷佑铭, 方同. 混沌吸引子的对称破缺激变.  , 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [14] 鲁公儒, 李 祥, 李培英. R-宇称破缺的相互作用研究.  , 2008, 57(2): 778-783. doi: 10.7498/aps.57.778
    [15] 董正超. d波超导体NIS结中的时间反演对称态的破缺与准粒子寿命效应.  , 2000, 49(2): 339-343. doi: 10.7498/aps.49.339
    [16] 易林, 姚凯伦. 三维量子自旋玻璃理论(Ⅲ)──replica对称破缺解.  , 1996, 45(1): 133-139. doi: 10.7498/aps.45.133
    [17] 余扬政, 陈熊熊. 二维超对称模型的超对称破缺和Witten指数.  , 1993, 42(2): 214-222. doi: 10.7498/aps.42.214
    [18] 孙宗琦. 振动弯结与点缺陷交互作用时间平均场的对称破缺及自组织现象.  , 1992, 41(12): 1987-1992. doi: 10.7498/aps.41.1987
    [19] 范海福, 古元新. 求解非中心对称晶体结构的人工相位退化法(Ⅱ)——试解P21空间群含重原子的复杂晶体结构.  , 1982, 31(7): 969-971. doi: 10.7498/aps.31.969
    [20] 赵保恒. 自发破缺规范理论中的光子-光子散射.  , 1976, 25(1): 53-57. doi: 10.7498/aps.25.53
计量
  • 文章访问数:  314
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-03
  • 修回日期:  2025-03-25
  • 上网日期:  2025-04-08
  • 刊出日期:  2025-06-05

/

返回文章
返回
Baidu
map