搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向后摩尔Ge-CMOS制造的超薄high-k LaLuO3栅介质工艺研究

唐晓雨 刘玉杰 花涛

引用本文:
Citation:

面向后摩尔Ge-CMOS制造的超薄high-k LaLuO3栅介质工艺研究

唐晓雨, 刘玉杰, 花涛
cstr: 32037.14.aps.74.20250126

Demonstration of ultra-thin high-k LaLuO3 gate dielectric for Ge-CMOS manufacture in More Moore application

TANG Xiaoyu, LIU Yujie, HUA Tao
cstr: 32037.14.aps.74.20250126
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • IV族元素锗材料由于具有电子和空穴迁移率高、禁带宽度小、与硅工艺相兼容等优势, 在低功耗高迁移率场效应晶体管领域具有广泛的应用潜力, 相应的Ge基金属-氧化物-半导体场效应晶体管(MOSFET)技术成为延续摩尔(more Moore)和超越摩尔(more than Moore)技术领域的前沿研究热点. 面向高迁移率的Ge基晶体管制备, 高质量栅极氧化物工艺是关键. 而高介电常数的Ge基栅极氧化物可以在提高栅控能力的同时, 有效降低器件栅极漏电, 提升器件的性能. 稀土系氧化物LaLuO3介电常数较高, 并且晶化温度高, 是制备Ge基MOSFET栅介质的优选方案. 本文通过磁控溅射技术制备Ge基氧化物LaLuO3介质, 并系统研究了退火工艺的气体种类、压强等氛围条件对Ge MOS栅电容特性的影响, 揭示了常压氧气氛围退火可以改善器件栅电容迟滞现象, 但存在栅界面层厚度增大的问题; 通过进一步发展基于高压低氧含量(0.1% O2)气体氛围退火技术, 在修复LaLuO3/Ge界面缺陷并减少氧空位产生的同时, 实现了极低的等效氧化层厚度(1.8 nm), 相应的LaLuO3/Ge MOS结构电容-电压曲线迟滞仅为 40 mV, 为Ge MOSFET提供了高性能LaLuO3/Ge栅极工艺方案.
    Germanium material holds great potential applications in low-power, high-mobility field-effect transistors because of their advantages of high electron and hole mobility, narrow bandgap, and compatibility with silicon CMOS technologies. The development of high-quality gate oxide processes is crucial in fabricating high-mobility Ge-based transistors, especially those with high dielectric constant for superior gate control and preferable gate stability. Rare-earth oxides represented by LaLuO3 have high dielectric constants and high crystallization temperatures, making them potential candidates for Ge-based metal-oxide-semiconductor field-effect transistor (MOSFET) gate technology. In this work, a germanium (Ge)-based oxide dielectric LaLuO3 is fabricated utilizing a p-type Ge substrate with a (111) crystal orientation and a doping concentration of 1×1016 cm–3, and radio-frequency (RF) co-sputtering 2-inch 99.9% La2O3 and Lu2O3 targets. Systematical investigations are conducted to evaluate the effects of annealing process conditions on the characteristics of the LaLuO3/Ge MOS gate structure under three specifically designed annealing atmospheres, i.e. nitrogen, oxygen, and a nitrogen-oxygen mixed gas with an N2:O2 ratio of 0.999∶0.001. Meanwhile, the influence of annealing pressure is also explored. The results show that annealing in pure oxygen at atmospheric pressure can reduce the hysteresis of gate capacitance, but it can lead to the formation of interface layers. Correspondingly, annealing technique based on high-pressure and low-oxygen-content (0.1% O2) atmosphere is developed, which not only improves the LaLuO3/Ge interface quality and suppresses the oxygen vacancy generation, but also achieves an extremely low equivalent oxide thickness (EOT) of 1.8 nm and a hysteresis voltage of only 40 mV, resulting in an ideal LaLuO3/Ge MOS structure. This work thus provides a high-performance LaLuO3/Ge gate process solution for Ge MOSFETs.
      通信作者: 唐晓雨, xiaoyutang@njit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62104102)和南京工程学院引进人才基金(批准号: YKJ201827)资助的课题.
      Corresponding author: TANG Xiaoyu, xiaoyutang@njit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62104102) and the Scientific Research Foundation of Nanjing Institute of Technology, China (Grant No. YKJ201827).
    [1]

    Del Alamo J A 2011 Nature 479 317Google Scholar

    [2]

    赵毅, 李骏康, 郑泽杰 2019 68 167301Google Scholar

    Zhao Y, Li J K, Zheng Z J 2019 Acta Phys. Sin. 68 167301Google Scholar

    [3]

    Wang S W, Guo H X, Ma T, Lei Z F, Ma W Y, Zhong X L, Zhang H, Lu X J, Li J F, Fang J L, Zeng T X 2024 Acta Phys. Sin. 73 238501 [王颂文, 郭红霞, 马腾, 雷志锋, 马武英, 钟向丽, 张鸿, 卢小杰, 李济芳, 方俊霖, 曾天祥 2024 73 238501]Google Scholar

    Wang S W, Guo H X, Ma T, Lei Z F, Ma W Y, Zhong X L, Zhang H, Lu X J, Li J F, Fang J L, Zeng T X 2024 Acta Phys. Sin. 73 238501Google Scholar

    [4]

    Shao Y J, Zhou J, Xu N, Chen J, Watanabe K, Taniguchi T, Shi Y, Li S L 2023 Chin. Phys. Lett. 40 068501Google Scholar

    [5]

    Yan N, Xiong Z R, Qin C B, Li X X 2024 Chin. Phys. Lett. 41 028101Google Scholar

    [6]

    王琛, 温盼, 彭聪, 徐萌, 陈龙龙, 李喜峰, 张建华 2023 72 087302Google Scholar

    Wang C, Wen P, Peng C, Xu M, Chen L L, Li X F, Zhang J H 2023 Acta Phys. Sin. 72 087302Google Scholar

    [7]

    Wu H, Wu W, Si M, Peide D Y 2015 IEEE International Electron Devices Meeting (IEDM) Washington DC USA, December 7−9, 2015 p2.1.1

    [8]

    Yu B, Chang L, Ahmed S, Wang H, Bell S, Yang C Y, Tabery C, Ho C, Xiang Q, King T J, Bokor J, Hu C, Lin M R, Kyser D 2002 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, December 8−11, 2002 p10.2.1

    [9]

    曹磊, 刘红侠 2012 61 247303Google Scholar

    Cao L, Liu H 2012 Acta Phys. Sin. 61 247303Google Scholar

    [10]

    Kim J H, Kim S, Park B G 2019 IEEE Trans. Elec. Dev. 66 1656Google Scholar

    [11]

    陈俊东, 韩伟华, 杨冲, 赵晓松, 郭仰岩, 张晓迪, 杨富华 2020 69 137701Google Scholar

    Chen J D, Han W H, Yang C, Zhao X S, Guo Y Y, Zhang X D, Yang F H 2020 Acta Phys. Sin. 69 137701Google Scholar

    [12]

    Liu C, Wang X Z, Shen C, Ma L P, Yang X Q, Kong Y, Ma W, Liang Y, Feng S, Wang X Y, Wei Y N, Zhu X, Li B, Li C Z, Dong S C, Zhang L N, Ren W C, Sun D M, Cheng H M 2024 Nature 632 782Google Scholar

    [13]

    Wei W J, Lü W F, Han Y, Zhang C Y, Chen D K 2023 Chin. Phys. B 32 097301Google Scholar

    [14]

    Takagi S, Zhang R, Suh J, Kim S H, Yokoyama M, Nishi K, Takenaka M 2015 Jpn. J. Appl. Phys. 54 06FA01Google Scholar

    [15]

    Kamata Y 2008 Mater. Today 11 30Google Scholar

    [16]

    Zhang R, Huang P C, Lin J C, Taoka N, Takenaka M, Takagi S 2013 IEEE Trans. Elec. Dev. 60 927Google Scholar

    [17]

    Nakaharai S, Tezuka T, Sugiyama N, Moriyama Y, Takagi S 2003 Appl. Phys. Lett. 83 3516Google Scholar

    [18]

    Chen C W, Tzeng J Y, Chung C T, Chien H P, Chien C H, Luo G L 2014 IEEE Trans. Elec. Dev. 61 2656Google Scholar

    [19]

    Zhang R, Tang X, Yu X, Li J, Zhao Y 2016 IEEE Elec. Dev. Lett. 37 831Google Scholar

    [20]

    Murad S A, Baine P T, McNeill D W, Mitchell S J N, Armstrong B M, Modreanu M, Hughes G, Chellappan R K 2012 Solid-state Electrons. 78 136Google Scholar

    [21]

    Lee C H, Nishimura T, Nagashio K, Kita K, Toriumi A 2011 IEEE Trans. Elec. Dev. 58 1295Google Scholar

    [22]

    Xie M, Nishimura T, Yajima T, Toriumi A 2020 J. Appl. Phys. 127 024101Google Scholar

    [23]

    Wang S K, Kita K, Nishimura T, Nagashio K, Toriumi A 2011 Jpn. J. Appl. Phys. 50 04DA01Google Scholar

    [24]

    Ogawa S, Suda T, Yamamoto T, Kutsuki K, Hideshima I, Hosoi T, Shimura T, Watanabe H 2011 Appl. Phys. Lett. 99 142101Google Scholar

    [25]

    Roeckerath M, Heeg T, Lopes J M J, Schubert J, Mantl S, Besmehn A, Myllymӓki P, Niinistö L 2008 Thin Solid Films 517 201Google Scholar

    [26]

    Goh K H, Haseeb A S M A, Wong Y H 2017 Mater. Sci. Semicon. Proc. 68 302Google Scholar

    [27]

    Gu J J, Liu Y Q, Xu M, Celler G K, Gordon R G, Ye P D 2010 Appl. Phys. Lett. 97 012106Google Scholar

    [28]

    Özben E D, Lopes J M J, Nichau A, Schnee M, Lenk S, Besmehn A, Bourdelle K K, Zhao Q T, Schubert J, Mantl S 2010 IEEE Elec. Dev. Lett. 32 15Google Scholar

    [29]

    Yu W J, Zhang B, Liu C, Xue Z Y, Chen M, Zhao Q T 2014 Chin. Phys. Lett. 31 016101Google Scholar

    [30]

    Xiong K, Robertson 2009 Microelectron. Eng. 86 1672Google Scholar

    [31]

    Radtke C, Krug C, Soares G V, Baumvol I J R, Lopes J M J, Durgun-Ozben E, Nichau A, Schubert J, Mantl S 2010 Electrochem. Solid-State Lett. 13 G37Google Scholar

    [32]

    Tabata T, Lee C H, Kita K, Toriumi A 2008 ECS Trans. 16 479Google Scholar

    [33]

    Lee C H, Tabata T, Nishimura T, Nagashio K, Toriumi A 2012 Appl. Phys. Lett. 5 114001Google Scholar

  • 图 1  Au/LaLuO3/Ge/Al MOS电容制备工艺流程和器件结构示意图

    Fig. 1.  Fabrication process and device structure of Au/LaLuO3/Ge/Al MOS capacitor.

    图 2  共溅射生成的30 nm LaLuO3薄膜的XPS测试数据与拟合峰

    Fig. 2.  XPS data and fitting peak curves for 30 nm LaLuO3 film by co-sputtering.

    图 3  10 nm LaLuO3/Ge MOS 电容在不同环境下退火的电容-电压曲线(退火温度为600 ℃, 时间是30 s, 测试频率为 1 kHz—1 MHz) (a)氮气氛围; (b)氧气氛围; (c)低氧含量气体氛围

    Fig. 3.  The C -V curves of 10 nm LaLuO3/Ge MOS capacitors under different annealing atmosphere: (a) N2; (b) O2; (c) N2+0.1% O2. The annealing temperature is 600 ℃ and time is 30 s, with frequency changing from 1 kHz to 1 MHz.

    图 4  不同气体氛围下退火的LaLuO3/Ge MOS电容在1 MHz测试频率下的(a)电容-电压曲线和(b)迟滞电压

    Fig. 4.  The (a) C -V curves and (b) hysteresis values of LaLuO3/Ge MOS capacitors under different annealing atmospheres at frequency of 1 MHz

    图 5  采用两步退火处理后的LaLuO3/Ge MOS电容的CV曲线, 第1步为600 ℃下氮气退火30 s , 第2步为氧气退火, 温度分别为(a) 500 ℃和(b) 400 ℃

    Fig. 5.  The C -V curves of LaLuO3/Ge MOS capacitors under two-stage annealing procedure, the first step is annealing in N2 ambient for 30 s at 600 ℃ and the second step is annealing in O2 ambient at (a) 500 ℃ and (b) 400 ℃.

    图 6  4 nm LaLuO3/Ge MOS 电容在不同环境下退火的电容-电压曲线, 测试频率为 1 MHz

    Fig. 6.  The C -V curves of 4 nm LaLuO3/Ge MOS capacitors under different annealing atmosphere at measuring frequency of 1 MHz.

    图 7  不同环境下退火的LaLuO3/Ge MOS 电容的(a) CET和迟滞, 以及(b)界面态密度Dit计算结果

    Fig. 7.  (a) CET and hysteresis and (b) Dit at Fermi level of LaLuO3/Ge MOS capacitors under different annealing atmosphere.

    图 8  采用高压低氧含量(0.1%)气体退火后的4 nm LaLuO3/Ge MOS的电容-电压曲线

    Fig. 8.  The C -V characteristics of 4 nm LaLuO3/Ge MOS capacitors under high pressure N2+0.1%O2 mixture ambient.

    Baidu
  • [1]

    Del Alamo J A 2011 Nature 479 317Google Scholar

    [2]

    赵毅, 李骏康, 郑泽杰 2019 68 167301Google Scholar

    Zhao Y, Li J K, Zheng Z J 2019 Acta Phys. Sin. 68 167301Google Scholar

    [3]

    Wang S W, Guo H X, Ma T, Lei Z F, Ma W Y, Zhong X L, Zhang H, Lu X J, Li J F, Fang J L, Zeng T X 2024 Acta Phys. Sin. 73 238501 [王颂文, 郭红霞, 马腾, 雷志锋, 马武英, 钟向丽, 张鸿, 卢小杰, 李济芳, 方俊霖, 曾天祥 2024 73 238501]Google Scholar

    Wang S W, Guo H X, Ma T, Lei Z F, Ma W Y, Zhong X L, Zhang H, Lu X J, Li J F, Fang J L, Zeng T X 2024 Acta Phys. Sin. 73 238501Google Scholar

    [4]

    Shao Y J, Zhou J, Xu N, Chen J, Watanabe K, Taniguchi T, Shi Y, Li S L 2023 Chin. Phys. Lett. 40 068501Google Scholar

    [5]

    Yan N, Xiong Z R, Qin C B, Li X X 2024 Chin. Phys. Lett. 41 028101Google Scholar

    [6]

    王琛, 温盼, 彭聪, 徐萌, 陈龙龙, 李喜峰, 张建华 2023 72 087302Google Scholar

    Wang C, Wen P, Peng C, Xu M, Chen L L, Li X F, Zhang J H 2023 Acta Phys. Sin. 72 087302Google Scholar

    [7]

    Wu H, Wu W, Si M, Peide D Y 2015 IEEE International Electron Devices Meeting (IEDM) Washington DC USA, December 7−9, 2015 p2.1.1

    [8]

    Yu B, Chang L, Ahmed S, Wang H, Bell S, Yang C Y, Tabery C, Ho C, Xiang Q, King T J, Bokor J, Hu C, Lin M R, Kyser D 2002 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, December 8−11, 2002 p10.2.1

    [9]

    曹磊, 刘红侠 2012 61 247303Google Scholar

    Cao L, Liu H 2012 Acta Phys. Sin. 61 247303Google Scholar

    [10]

    Kim J H, Kim S, Park B G 2019 IEEE Trans. Elec. Dev. 66 1656Google Scholar

    [11]

    陈俊东, 韩伟华, 杨冲, 赵晓松, 郭仰岩, 张晓迪, 杨富华 2020 69 137701Google Scholar

    Chen J D, Han W H, Yang C, Zhao X S, Guo Y Y, Zhang X D, Yang F H 2020 Acta Phys. Sin. 69 137701Google Scholar

    [12]

    Liu C, Wang X Z, Shen C, Ma L P, Yang X Q, Kong Y, Ma W, Liang Y, Feng S, Wang X Y, Wei Y N, Zhu X, Li B, Li C Z, Dong S C, Zhang L N, Ren W C, Sun D M, Cheng H M 2024 Nature 632 782Google Scholar

    [13]

    Wei W J, Lü W F, Han Y, Zhang C Y, Chen D K 2023 Chin. Phys. B 32 097301Google Scholar

    [14]

    Takagi S, Zhang R, Suh J, Kim S H, Yokoyama M, Nishi K, Takenaka M 2015 Jpn. J. Appl. Phys. 54 06FA01Google Scholar

    [15]

    Kamata Y 2008 Mater. Today 11 30Google Scholar

    [16]

    Zhang R, Huang P C, Lin J C, Taoka N, Takenaka M, Takagi S 2013 IEEE Trans. Elec. Dev. 60 927Google Scholar

    [17]

    Nakaharai S, Tezuka T, Sugiyama N, Moriyama Y, Takagi S 2003 Appl. Phys. Lett. 83 3516Google Scholar

    [18]

    Chen C W, Tzeng J Y, Chung C T, Chien H P, Chien C H, Luo G L 2014 IEEE Trans. Elec. Dev. 61 2656Google Scholar

    [19]

    Zhang R, Tang X, Yu X, Li J, Zhao Y 2016 IEEE Elec. Dev. Lett. 37 831Google Scholar

    [20]

    Murad S A, Baine P T, McNeill D W, Mitchell S J N, Armstrong B M, Modreanu M, Hughes G, Chellappan R K 2012 Solid-state Electrons. 78 136Google Scholar

    [21]

    Lee C H, Nishimura T, Nagashio K, Kita K, Toriumi A 2011 IEEE Trans. Elec. Dev. 58 1295Google Scholar

    [22]

    Xie M, Nishimura T, Yajima T, Toriumi A 2020 J. Appl. Phys. 127 024101Google Scholar

    [23]

    Wang S K, Kita K, Nishimura T, Nagashio K, Toriumi A 2011 Jpn. J. Appl. Phys. 50 04DA01Google Scholar

    [24]

    Ogawa S, Suda T, Yamamoto T, Kutsuki K, Hideshima I, Hosoi T, Shimura T, Watanabe H 2011 Appl. Phys. Lett. 99 142101Google Scholar

    [25]

    Roeckerath M, Heeg T, Lopes J M J, Schubert J, Mantl S, Besmehn A, Myllymӓki P, Niinistö L 2008 Thin Solid Films 517 201Google Scholar

    [26]

    Goh K H, Haseeb A S M A, Wong Y H 2017 Mater. Sci. Semicon. Proc. 68 302Google Scholar

    [27]

    Gu J J, Liu Y Q, Xu M, Celler G K, Gordon R G, Ye P D 2010 Appl. Phys. Lett. 97 012106Google Scholar

    [28]

    Özben E D, Lopes J M J, Nichau A, Schnee M, Lenk S, Besmehn A, Bourdelle K K, Zhao Q T, Schubert J, Mantl S 2010 IEEE Elec. Dev. Lett. 32 15Google Scholar

    [29]

    Yu W J, Zhang B, Liu C, Xue Z Y, Chen M, Zhao Q T 2014 Chin. Phys. Lett. 31 016101Google Scholar

    [30]

    Xiong K, Robertson 2009 Microelectron. Eng. 86 1672Google Scholar

    [31]

    Radtke C, Krug C, Soares G V, Baumvol I J R, Lopes J M J, Durgun-Ozben E, Nichau A, Schubert J, Mantl S 2010 Electrochem. Solid-State Lett. 13 G37Google Scholar

    [32]

    Tabata T, Lee C H, Kita K, Toriumi A 2008 ECS Trans. 16 479Google Scholar

    [33]

    Lee C H, Tabata T, Nishimura T, Nagashio K, Toriumi A 2012 Appl. Phys. Lett. 5 114001Google Scholar

  • [1] 贾晓菲, 魏群, 张文鹏, 何亮, 武振华. 10 nm金属氧化物半导体场效应晶体管中的热噪声特性分析.  , 2023, 72(22): 227303. doi: 10.7498/aps.72.20230661
    [2] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型.  , 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [3] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型.  , 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [4] 陈扶, 唐文昕, 于国浩, 张丽, 徐坤, 张宝顺. U型槽刻蚀工艺对GaN垂直沟槽型金属-氧化物-半导体场效应晶体管电学特性的影响.  , 2020, 69(9): 098501. doi: 10.7498/aps.69.20191850
    [5] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究.  , 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [6] 王军, 王林, 王丹丹. 40 nm金属氧化物半导体场效应晶体管感应栅极噪声及互相关噪声频率与偏置依赖性建模.  , 2016, 65(23): 237102. doi: 10.7498/aps.65.237102
    [7] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇, 殷树娟, 周春宇. 单轴应变硅N沟道金属氧化物半导体场效应晶体管电容特性模型.  , 2015, 64(6): 067305. doi: 10.7498/aps.64.067305
    [8] 辛艳辉, 刘红侠, 王树龙, 范小娇. 对称三材料双栅应变硅金属氧化物半导体场效应晶体管二维解析模型.  , 2014, 63(14): 148502. doi: 10.7498/aps.63.148502
    [9] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 王冠宇. 应变Si n型金属氧化物半导体场效应晶体管电荷模型.  , 2014, 63(1): 017101. doi: 10.7498/aps.63.017101
    [10] 白玉蓉, 徐静平, 刘璐, 范敏敏, 黄勇, 程智翔. 高k栅介质小尺寸全耗尽绝缘体上锗p型金属氧化物半导体场效应晶体管漏源电流模型.  , 2014, 63(23): 237304. doi: 10.7498/aps.63.237304
    [11] 陈海峰. 反向衬底偏压下纳米N沟道金属氧化物半导体场效应晶体管中栅调制界面产生电流特性研究.  , 2013, 62(18): 188503. doi: 10.7498/aps.62.188503
    [12] 孙鹏, 杜磊, 陈文豪, 何亮. 基于辐照前1/f噪声的金属-氧化物-半导体场效应晶体管潜在缺陷退化模型.  , 2012, 61(6): 067801. doi: 10.7498/aps.61.067801
    [13] 游海龙, 蓝建春, 范菊平, 贾新章, 查薇. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应晶体管特性退化研究.  , 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [14] 吴铁峰, 张鹤鸣, 王冠宇, 胡辉勇. 小尺寸应变Si金属氧化物半导体场效应晶体管栅隧穿电流预测模型.  , 2011, 60(2): 027305. doi: 10.7498/aps.60.027305
    [15] 高博, 余学峰, 任迪远, 崔江维, 兰博, 李明, 王义元. p型金属氧化物半导体场效应晶体管低剂量率辐射损伤增强效应模型研究.  , 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
    [16] 李伟华, 庄奕琪, 杜磊, 包军林. n型金属氧化物半导体场效应晶体管噪声非高斯性研究.  , 2009, 58(10): 7183-7188. doi: 10.7498/aps.58.7183
    [17] 许军, 黄宇健, 丁士进, 张卫. Ta和TaN底电极对原子层淀积HfO2介质MIM电性能的影响.  , 2009, 58(5): 3433-3436. doi: 10.7498/aps.58.3433
    [18] 彭绍泉, 杜 磊, 庄奕琪, 包军林, 何 亮, 陈伟华. 基于辐照前1/f噪声的金属-氧化物-半导体场效应晶体管辐照退化模型.  , 2008, 57(8): 5205-5211. doi: 10.7498/aps.57.5205
    [19] 张志勇, 王太宏. 单电子晶体管-金属氧化物半导体场效应晶体管多峰值负微分电阻器件.  , 2003, 52(7): 1766-1770. doi: 10.7498/aps.52.1766
    [20] 任红霞, 郝 跃, 许冬岗. N型槽栅金属-氧化物-半导体场效应晶体管抗热载流子效应的研究.  , 2000, 49(7): 1241-1248. doi: 10.7498/aps.49.1241
计量
  • 文章访问数:  282
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-26
  • 修回日期:  2025-02-22
  • 上网日期:  2025-03-12

/

返回文章
返回
Baidu
map