搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于全局拟合的多普勒差分干涉仪成像漂移检测方法

文镇清 李娟 郝雄波 畅晨光 李洪波 左浩璞 傅頔 冯玉涛

引用本文:
Citation:

基于全局拟合的多普勒差分干涉仪成像漂移检测方法

文镇清, 李娟, 郝雄波, 畅晨光, 李洪波, 左浩璞, 傅頔, 冯玉涛
cstr: 32037.14.aps.74.20250027

A method of monitoring image shift based on global fitting Doppler heterodyne interferometer

WEN Zhenqing, LI Juan, HAO Xiongbo, CHANG Chenguang, LI Hongbo, ZUO Haopu, FU Di, FENG Yutao
cstr: 32037.14.aps.74.20250027
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 大气风场在全球气候研究和空间探测中具有重要作用, 多普勒差分干涉仪作为新型被动测风干涉仪, 其通过测量大气气辉谱线的多普勒频移引起的相位变化量来反演大气风速, 但环境温度波动会导致像面相对于干涉仪发生漂移, 从而影响风场测量结果. 本文提出一种在光栅上刻蚀周期性刻槽, 并对其成像图案进行建模与全局拟合以实现高精度成像漂移检测的方法. 对刻槽图像的信噪比及模型参数拟合误差对检测结果的影响进行仿真分析, 结果表明, 图像信噪比、刻槽数量拟合精度与刻槽宽度拟合精度是影响检测精度的关键因素, 而刻槽图像边缘的平滑度的拟合精度对检测结果影响较小. 在近红外多普勒差分干涉仪的热稳定实验中, 通过对实验所测数据人为施加漂移量, 并进行成像漂移监测, 结果表明该方法能够实现9.96 nm的检测精度. 此外, 经成像漂移校正后的干涉图相位的局部振荡显著减弱, 表明该方法能有效检测与校正成像漂移, 显著提升干涉图像相位稳定性, 为高精度风速测量提供了可靠保障.
    Accurate atmospheric wind field measurements are critical for understanding global climate dynamics and facilitating space exploration. Doppler asymmetric spatial heterodyne interferometer (DASH) is used to measure atmospheric wind speed through detecting the phase changes in interferograms induced by Doppler shifts of airglow emission lines. However, environmental temperature fluctuations and mechanical vibrations often cause imaging plane to shift, thereby introducing phase deviations, and degrading the measurement accuracy. In this study, a novel method of monitoring global fitting-based imaging shift is proposed. By etching periodic notches on the diffraction grating surface, the method models and fits the notch patterns formed on the detector plane to achieve precise imaging shift detection and correction. The optimization of notch signal modeling significantly reduces the number of fitting parameters, thus improving computational efficiency and detection precision. Through extensive simulations, the influences of signal-to-noise ratio (SNR) and model parameter variation on detection accuracy are analyzed. The results indicate that when the SNR exceeds 11, the detection uncertainty is still below 6.5 nm. Sensitivity analysis reveals that the detection error stays within acceptable limits when the variations of notch number and notch width are controlled within 40% and 0.7%, respectively, while the influence of edge smoothness parameter of notch pattern is negligible. To validate the performance of the method, the thermal stability is tested by using a near-infrared DASH prototype. The experimental results demonstrate a strong correlation between interferogram phase shifts, imaging plane shifts, and environmental temperature variations. After applying the proposed correction method, local phase fluctuations in the interferogram are significantly reduced, thus the phase stability is improved. Further, artificially applied imaging shifts are accurately detected with errors consistently below 9.96 nm, thereby confirming the reliability and precision of this method. All in all, the proposed method effectively detects and corrects the imaging plane shifts caused by temperature variations, enhancing interferogram phase stability and ensuring high-precision wind speed measurements. This method provides a robust and computationally efficient solution for reducing imaging shifts in DASH systems, and has great potential applications in atmospheric wind field measurement and space-based observation.
      通信作者: 冯玉涛, fytciom@126.com
    • 基金项目: 国家自然科学基金(批准号: 41005019)、中国科学院西部青年学者项目(批准号: XAB2016A07)、陕西省自然科学基础研究计划(批准号: 2019JQ-931)、中国科学院西部之光交叉团队项目(批准号: E1294301)、国家重点研发计划(批准号: 2023YFB3906000)和中国科学院科研仪器设备研制项目 (批准号:YJKYYQ20210021)资助的课题.
      Corresponding author: FENG Yutao, fytciom@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41005019), the West Light Foundation of Chinese Academy of Sciences (Grant No. XAB2016A07), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2019JQ-931), the West Light Cross-Disciplinary Innovation Team of Chinese Academy of Sciences (Grant No. E1294301), the National Key R&D Program of China (Grant No. 2023YFB3906000), and the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20210021).
    [1]

    Shepherd G G 2015 Acta Astronaut. 115 206Google Scholar

    [2]

    Dhadly M, Sassi F, Emmert J, Drob D, Conde M, Wu Q, Makela J, Budzien S Nicholas A 2023 Astron. Space Sci. 9 1050586Google Scholar

    [3]

    唐远河, 崔进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜 2017 66 130601Google Scholar

    Tang Y H, Cui J, Gao H Y, Qu O Y, Duan X D, Li C X, Liu L N 2017 Acta Phys. Sin. 66 130601Google Scholar

    [4]

    冯玉涛, 傅頔, 赵增亮, 宗位国, 余涛, 盛峥, 朱亚军 2023 光学学报 43 0601011

    Feng Y T, Fu D, Zhao Z L, Zong W G, Yu T, Sheng Z, Zhu Y J 2023 Acta Opt. Sin. 43 0601011

    [5]

    Zhang S P, Thayer J P, Roble R G 2004 J. Atmos Sol-terr. Phys. 66 105Google Scholar

    [6]

    Englert C R, Harlander J M, Babcock D D, Stevens M H, Siskind D E 2006 Proc. SPIE 6303 63030TGoogle Scholar

    [7]

    Englert C R, Babcock D D, Harlander J M 2006 Appl. Opt. 46 7297

    [8]

    Harlander J M, Englert C R, Emmert J T, Babcock D D, Roesler F 2010 Opt. Express 18 26430Google Scholar

    [9]

    肖旸, 冯玉涛, 文镇清 2022 光子学报 51 16

    Xiao Y, Feng Y T, Wen Z Q 2022 Acta Photon. Sin. 51 16

    [10]

    Harding B J, Chau J L, He M, Englert C R, Harlander J M, Marr K D, Makela J J, Clahsen M, Li G, Ratnam M V, Rao S V B, Wu Y J J, England S L, Immel T J 2021 J. Geophys. Res. Space Phys. 126 e2020JA028947Google Scholar

    [11]

    Englert C R, Harlander J M, Brown C M, Makela J J, Marr K D, Immel T J In Fourier Transform Spectroscopy Lake Arrowhead, California, United States, March 1–4, 2015 pFM4A-1

    [12]

    Stevens M H, Englert C R, Harlander J M, England S L, Marr K D, Brown C M, Immel T J 2018 Space Sci. Rev. 214 4Google Scholar

    [13]

    Harlander J M, Englert C R, Brown C M, Marr K D, Miller I J, Zastera V, Bach B W, Mende S B 2017 Space Sci. Rev. 212 601Google Scholar

    [14]

    Englert C R, Brown C M, Bach B, Bach E, Bach K, Harlander J M, Seely J F, Marr K D, Miller I 2017 Appl. Opt. 56 2090Google Scholar

    [15]

    Marr K D, Thayer A S, Englert C R, Harlander J M 2020 Opt. Eng. 59 013102

    [16]

    Englert C R, Harlander J M, Marr K D, Harding B J, Makela J J, Fae T, Brown C M, Venkat Ratnam M, Vijaya Bhaskara Rao S , Immel T J 2023 Space Sci. Rev. 219 27

    [17]

    张亚飞, 冯玉涛, 傅頔, 畅晨光, 李娟, 白清兰, 胡炳樑 2022 71 084201Google Scholar

    Zhang Y F, Feng Y T, Fu D, Chang C G, Li J, Bai Q L, Hu B L 2022 Acta Phys. Sin. 71 084201Google Scholar

    [18]

    Zhang Y F, Feng Y T, Fu D, Wang P C, Sun J, Bai Q L 2020 Chin. Phys. B 29 104204Google Scholar

    [19]

    傅頔, 畅晨光, 孙剑, 李娟, 武魁军, 冯玉涛, 刘学斌 2022 光学学报 42 18

    Fu D, Chang C G, Sun J, Li J, Wu K J, Feng Y T, Liu X B 2022 Acta Opt. Sin. 42 18

    [20]

    Wei D K, Zhu Y J, Liu J L, Gong Q C, Kaufmann M, Olschewski F, Knieling P, Xu J Y, Koppmann R, Riese M 2020 Opt Express 28 19887Google Scholar

  • 图 1  DASH原理图, 右下角为干涉图(顶部为刻槽图像)

    Fig. 1.  Schematic of a DASH interferometer. The interferogram is located at the lower right (The top area is notch pattern).

    图 2  (a)梳状函数; (b)梳状函数卷积矩形函数后的方波函数; (c)方波函数卷积高斯核后的刻槽形状

    Fig. 2.  (a) The comb function; (b) the square wave function after the comb function convolved with the rectangle function; (c) the notch signal after the square wave function convolved with Gaussian kernel.

    图 3  实测刻槽信号及模拟刻槽信号

    Fig. 3.  Measured notch signal and simulated notch signal.

    图 4  检测漂移量及检测误差

    Fig. 4.  Measured imaging shift and measurement error.

    图 5  不同信噪比、不同成像漂移量下的成像漂移检测不确定度

    Fig. 5.  Uncertainty of imaging shift measurement under different SNR and different imaging shift.

    图 6  SNR = 100时, 高斯函数标准差σ的拟合误差对测量精度的影响

    Fig. 6.  Influence of fitting error of standard deviation σ of Gaussian function on measurement accuracy when SNR = 100

    图 7  SNR = 100下, 矩形函数宽度Wnotches的拟合误差对测量精度的影响

    Fig. 7.  Influence of fitting error of rectangle function width Wnotches on measurement accuracy when SNR = 100.

    图 8  SNR = 100下, 脉冲数目Nnotches的拟合误差对测量精度的影响

    Fig. 8.  Influence of fitting of pulse number Nnotches on measurement accuracy when SNR = 100.

    图 9  近红外多普勒差分干涉仪样机示意图

    Fig. 9.  Schematic diagram of the near infrared DASH prototype.

    图 10  (a)实验中所测刻槽图像的成像漂移量(蓝色虚线), 对所测图像人为给定成像漂移量后对应的检测结果(绿色实线); (b)对实验中所测每一帧刻槽图像叠加固定的成像漂移量

    Fig. 10.  (a) The imaging shift of the notch image measured in the experiment (blue dashed line), and the corresponding detection result of the notch image measured in the experiment after artificially superimposing the imaging shift amount (green solid line); (b) the fixed imaging shift is superimposed on each frame of notch image measured in the experiment.

    图 11  蓝线为图10(a)中两信号的差值, 即对人为给定漂移量的检测值, 红线为检测误差, 即检测成像漂移量与人为给定成像漂移量间的差值

    Fig. 11.  The blue line is the difference between the two signals in Fig.10 (a), that is, the measurement of the artificially given amount of shift. The red line is the measurement error, that is, the difference between the measured image shift and the input image shift.

    图 12  近红外多普勒差分干涉仪样机的连续热稳定性测试数据, 灰色线为温度数据, 蓝色虚线为干涉条纹相位, 绿色线为成像漂移引起的相位变化, 蓝色实线为成像漂移校正后的干涉条纹相位

    Fig. 12.  Thermal stability test data of the near infrared DASH prototype, the gray line is temperature data, the blue dashed line is fringe phase, the green line is phase change caused by imaging shift, and the blue solid line is fringe phase after imaging shift correction.

    表 1  仿真参数

    Table 1.  Simulation parameters.

    参数数值
    系统参数波长/nm867.16
    光程差/mm49.87
    光栅参数Littrow 波数/nm868.24
    光栅阶数1
    光栅闪耀角/(°)10
    光栅衍射效率70%
    探测器参数像元数2048×2048
    量子效率0.75
    像元尺寸/μm6.5
    刻槽信号参数刻槽数量111.81
    刻槽宽度/μm59.52
    下载: 导出CSV
    Baidu
  • [1]

    Shepherd G G 2015 Acta Astronaut. 115 206Google Scholar

    [2]

    Dhadly M, Sassi F, Emmert J, Drob D, Conde M, Wu Q, Makela J, Budzien S Nicholas A 2023 Astron. Space Sci. 9 1050586Google Scholar

    [3]

    唐远河, 崔进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜 2017 66 130601Google Scholar

    Tang Y H, Cui J, Gao H Y, Qu O Y, Duan X D, Li C X, Liu L N 2017 Acta Phys. Sin. 66 130601Google Scholar

    [4]

    冯玉涛, 傅頔, 赵增亮, 宗位国, 余涛, 盛峥, 朱亚军 2023 光学学报 43 0601011

    Feng Y T, Fu D, Zhao Z L, Zong W G, Yu T, Sheng Z, Zhu Y J 2023 Acta Opt. Sin. 43 0601011

    [5]

    Zhang S P, Thayer J P, Roble R G 2004 J. Atmos Sol-terr. Phys. 66 105Google Scholar

    [6]

    Englert C R, Harlander J M, Babcock D D, Stevens M H, Siskind D E 2006 Proc. SPIE 6303 63030TGoogle Scholar

    [7]

    Englert C R, Babcock D D, Harlander J M 2006 Appl. Opt. 46 7297

    [8]

    Harlander J M, Englert C R, Emmert J T, Babcock D D, Roesler F 2010 Opt. Express 18 26430Google Scholar

    [9]

    肖旸, 冯玉涛, 文镇清 2022 光子学报 51 16

    Xiao Y, Feng Y T, Wen Z Q 2022 Acta Photon. Sin. 51 16

    [10]

    Harding B J, Chau J L, He M, Englert C R, Harlander J M, Marr K D, Makela J J, Clahsen M, Li G, Ratnam M V, Rao S V B, Wu Y J J, England S L, Immel T J 2021 J. Geophys. Res. Space Phys. 126 e2020JA028947Google Scholar

    [11]

    Englert C R, Harlander J M, Brown C M, Makela J J, Marr K D, Immel T J In Fourier Transform Spectroscopy Lake Arrowhead, California, United States, March 1–4, 2015 pFM4A-1

    [12]

    Stevens M H, Englert C R, Harlander J M, England S L, Marr K D, Brown C M, Immel T J 2018 Space Sci. Rev. 214 4Google Scholar

    [13]

    Harlander J M, Englert C R, Brown C M, Marr K D, Miller I J, Zastera V, Bach B W, Mende S B 2017 Space Sci. Rev. 212 601Google Scholar

    [14]

    Englert C R, Brown C M, Bach B, Bach E, Bach K, Harlander J M, Seely J F, Marr K D, Miller I 2017 Appl. Opt. 56 2090Google Scholar

    [15]

    Marr K D, Thayer A S, Englert C R, Harlander J M 2020 Opt. Eng. 59 013102

    [16]

    Englert C R, Harlander J M, Marr K D, Harding B J, Makela J J, Fae T, Brown C M, Venkat Ratnam M, Vijaya Bhaskara Rao S , Immel T J 2023 Space Sci. Rev. 219 27

    [17]

    张亚飞, 冯玉涛, 傅頔, 畅晨光, 李娟, 白清兰, 胡炳樑 2022 71 084201Google Scholar

    Zhang Y F, Feng Y T, Fu D, Chang C G, Li J, Bai Q L, Hu B L 2022 Acta Phys. Sin. 71 084201Google Scholar

    [18]

    Zhang Y F, Feng Y T, Fu D, Wang P C, Sun J, Bai Q L 2020 Chin. Phys. B 29 104204Google Scholar

    [19]

    傅頔, 畅晨光, 孙剑, 李娟, 武魁军, 冯玉涛, 刘学斌 2022 光学学报 42 18

    Fu D, Chang C G, Sun J, Li J, Wu K J, Feng Y T, Liu X B 2022 Acta Opt. Sin. 42 18

    [20]

    Wei D K, Zhu Y J, Liu J L, Gong Q C, Kaufmann M, Olschewski F, Knieling P, Xu J Y, Koppmann R, Riese M 2020 Opt Express 28 19887Google Scholar

  • [1] 王恩龙, 王国超, 朱凌晓, 卞进田, 莫小娟, 孔辉. 一种面向原子干涉仪均匀量子非破坏测量的光学环形腔.  , 2025, 74(3): 033701. doi: 10.7498/aps.74.20241348
    [2] 王松, 周闯, 李素文, 牟福生. 基于法布里-珀罗干涉仪测量大气环境CO2的方法.  , 2024, 73(2): 020702. doi: 10.7498/aps.73.20231224
    [3] 孙思彤, 丁应星, 刘伍明. 基于线性与非线性干涉仪的量子精密测量研究进展.  , 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [4] 张亚飞, 冯玉涛, 傅頔, 畅晨光, 李娟, 白清兰, 胡炳樑. 基于分段边缘拟合的测风多普勒差分干涉仪成像热漂移监测方法.  , 2022, 71(8): 084201. doi: 10.7498/aps.71.20212086
    [5] 孙晨, 冯玉涛, 傅頔, 张亚飞, 李娟, 刘学斌. 多普勒差分干涉仪干涉图信噪比对相位不确定度研究.  , 2020, 69(1): 014202. doi: 10.7498/aps.69.20191179
    [6] 唐远河, 崔进, 郜海阳, 屈欧阳, 段晓东, 李存霞, 刘丽娜. 地基气辉成像干涉仪探测高层大气风场的定标研究.  , 2017, 66(13): 130601. doi: 10.7498/aps.66.130601
    [7] 张日伟, 孙学金, 严卫, 刘磊, 李岩, 赵剑, 颜万祥, 李浩然. 星载激光多普勒测风雷达鉴频系统仿真(I):基于Fizeau干涉仪的Mie通道大气风速反演研究.  , 2014, 63(14): 140702. doi: 10.7498/aps.63.140702
    [8] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法.  , 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [9] 张宣妮, 张淳民, 艾晶晶. 四分束风成像偏振干涉仪信噪比的研究.  , 2013, 62(3): 030701. doi: 10.7498/aps.62.030701
    [10] 张宣妮, 张淳民. 静态偏振风成像干涉仪光传输特性和光通量改善.  , 2012, 61(10): 104210. doi: 10.7498/aps.61.104210
    [11] 代海山, 张淳民, 穆廷魁. 宽场、消色差、温度补偿风成像干涉仪中次级条纹研究.  , 2012, 61(22): 224201. doi: 10.7498/aps.61.224201
    [12] 朱化春, 张淳民. 偏振风成像干涉仪多波长探测理论研究.  , 2011, 60(7): 074211. doi: 10.7498/aps.60.074211
    [13] 张淳民, 朱兰艳. 新型偏振风成像干涉仪中偏振化方向对调制度和干涉强度的影响研究.  , 2010, 59(2): 989-997. doi: 10.7498/aps.59.989
    [14] 刘宁, 张淳民, 王金婵, 穆廷魁. 新型静态偏振风成像干涉仪理论探测误差的分析与计算.  , 2010, 59(6): 4369-4379. doi: 10.7498/aps.59.4369
    [15] 朱化春, 张淳民, 简小华. 新型风成像干涉仪温度补偿理论研究.  , 2010, 59(2): 893-898. doi: 10.7498/aps.59.893
    [16] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量.  , 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [17] 叶剑勇, 张淳民, 赵葆常, 李英才. 高层大气风场四强度测量法误差分析与计算.  , 2008, 57(1): 67-73. doi: 10.7498/aps.57.67
    [18] 阮 锴, 张淳民, 赵葆常. 高层大气风场探测改型大光程差Sagnac干涉仪全视场角光程差与横向剪切量的精确计算.  , 2008, 57(9): 5435-5441. doi: 10.7498/aps.57.5435
    [19] 徐信业, 王育竹. 多普勒型原子干涉仪的理论探讨.  , 1997, 46(6): 1062-1072. doi: 10.7498/aps.46.1062
    [20] 倪育才, 王邦益. 用改进的瑞利干涉仪精确测量空气折射率.  , 1977, 26(1): 90-92. doi: 10.7498/aps.26.90
计量
  • 文章访问数:  404
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-07
  • 修回日期:  2025-02-08
  • 上网日期:  2025-02-17

/

返回文章
返回
Baidu
map