搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于弹性拓扑绝缘体的多频段谷锁定拓扑输运研究

林建华 毕仁贵 唐诗瑶 孔鹏 邓科

引用本文:
Citation:

基于弹性拓扑绝缘体的多频段谷锁定拓扑输运研究

林建华, 毕仁贵, 唐诗瑶, 孔鹏, 邓科
cstr: 32037.14.aps.74.20241322

Multiband valley-locked topological transport based on elastic topological insulator

LIN Jianhua, BI Rengui, TANG Shiyao, KONG Peng, DENG Ke
cstr: 32037.14.aps.74.20241322
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 自拓扑绝缘体概念从量子波领域拓展到经典波领域以来, 谷霍尔拓扑绝缘体因其新奇的物理特性、丰富的波调控方式等优势, 引起了大量的关注, 相关研究得到了快速发展. 本文针对传统谷拓扑绝缘体中边缘态输运容量小、结构不灵活等缺陷, 基于谷锁定原理设计了一种拓扑波导结构. 该结构的原始构形具有矩形脉连接的蜂窝晶格, 利用等效结构参数方法计算了模型的能带结构、输运特性, 发现其布里渊区角点K处有3个狄拉克点. 通过改变结构参数打破体系的空间反演对称性, 实现了3个频段的弹性波模式的拓扑相变; 在两个拓扑绝缘体中间插入具有狄拉克点的声子晶体组成拓扑异质结构, 展示了该结构的拓扑波导态具有多频段、宽度可调、强鲁棒性等优点. 基于该结构设计了能量分束器、能量汇聚器, 实现了对弹性波的多种灵活操控. 此研究不仅丰富了拓扑声学, 所设计的拓扑异质结构在多频段通信与信息处理方面具有潜在的应用前景.
    Since the topological insulator concept was expanded from the field of quantum waves to the field of elastic waves, the research related to the elastic system valley Hall insulator has been developed rapidly because of its novel physical properties, rich design ability for wave modulation and simple implementation conditions. To address the limitations of small energy and inflexible structure of the edge-state transmission of valley Hall insulators in traditional structure, a topological waveguide heterostructure is designed based on the valley locking principle. The original configuration of this structure features a honeycomb lattice connected by rectangular veins. The energy band structure and transmission characteristics of the model are calculated using the equivalent structural parameter method. It is found that there are three Dirac points at the corner point K of the Brillouin zone, and the spatial inversion symmetry of the system can be broken by changing the structural parameters, so as to realize the topological phase transition of the out-of-plane body elastic mode in three frequency bands. The topological heterogeneous structure is formed by superimposing Dirac point phonon crystals between two topological insulators, and the topological waveguide state possesses advantages, such as multiband, tunability, and robustness. The structure can be used to design energy splitters and energy convergers to achieve flexible manipulation of elastic waves. This study enriches topological acoustics, and the designed multi-band elastic topological insulator has potential applications in multi-band communication and information processing.
      通信作者: 毕仁贵, birengui@jsu.edu.cn ; 孔鹏, kongpeng@jsu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11964011)、湖南省教育厅科研基金(批准号: 24B0488)和吉首大学人才基金(批准号: jsdxrcyjkyxm201602)资助的课题.
      Corresponding author: BI Rengui, birengui@jsu.edu.cn ; KONG Peng, kongpeng@jsu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11964011), the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 24B0488), and the Jishou University Talent Fund China (Grant No. jsdxrcyjkyxm201602).
    [1]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [2]

    Moore J E 2010 Nature 464 194Google Scholar

    [3]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124Google Scholar

    [4]

    Miniaci M, Pal R, Morvan B, Ruzzene M 2018 Phys. Rev. X 8 031074Google Scholar

    [5]

    Zhou W J, Wu B, Su Y, Liu D Y, Chen W Q, Bao R H 2021 Mech. Adv. Mater. Struct. 28 221Google Scholar

    [6]

    Zeng Y, Zhang S Y, Zhou H T, et al. 2021 Mater. Des. 208 109906Google Scholar

    [7]

    Wang K, Zhou J X, Chang Y P, Ouyang H J, Xu D L, Yang Y 2020 Nonlinear Dyn. 101 755Google Scholar

    [8]

    Ding Y J, Peng Y G, Zhu Y F, et al. 2019 Phys. Rev. Lett. 122 014302Google Scholar

    [9]

    Yang Z J, Gao F, Shi X H, Lin X, Gao Z, Chong Y D, Zhang B L 2015 Phys. Rev. Lett. 114 114301Google Scholar

    [10]

    Wang P, Lu L, Bertoldi K 2015 Phys. Rev. Lett. 115 104302Google Scholar

    [11]

    Gao N, Qu S C, Si L, Wang J, Chen W Q 2021 Appl. Phys. Lett. 118 063502Google Scholar

    [12]

    Chen Y F, Meng F, Huang X D 2021 Mech. Syst. Signal Process. 146 107054Google Scholar

    [13]

    Huo S Y, Chen J J, Huang H B, Wei Y J, Tan Z H, Feng L Y, Xie X P 2021 Mech. Syst. Signal Process. 154 107543Google Scholar

    [14]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369Google Scholar

    [15]

    Brendel C, Peano V, Painter O, Marquardt F 2018 Phys. Rev. B 97 020102Google Scholar

    [16]

    Lin J H, Qi Y J, He Z J, Bi R G, Dong K 2024 Appl. Phys. Lett. 124 082202Google Scholar

    [17]

    王一鹤, 张志旺, 程营, 刘晓峻 2019 68 227805Google Scholar

    Wang Y H, Zhang Z W, Cheng Y, Liu X J 2019 Acta Phys. Sin. 68 227805Google Scholar

    [18]

    贾鼎, 葛勇, 袁寿其, 孙宏祥 2019 68 224301Google Scholar

    Jia D, Ge Y, Yuan S Q, Sun H X 2019 Acta Phys. Sin. 68 224301Google Scholar

    [19]

    郑周甫, 尹剑飞, 温激鸿, 郁殿龙 2020 69 156201Google Scholar

    Zheng Z F, Yin J F, Wen J H, Yu D L 2020 Acta Phys. Sin. 69 156201Google Scholar

    [20]

    Jiang Z, Zhou Y Y, Zheng S J, Liu J T, Xia B Z 2023 Int. J. Mech. Sci. 255 108464Google Scholar

    [21]

    Huo S, Chen J, Huang H, 2017 Sci. Rep. 7 10335Google Scholar

    [22]

    Yang Z Z, Li X, Peng Y Y, 2020 Phys. Rev. Lett. 125 255502.Google Scholar

    [23]

    Xu G G, Sun X W, Wen X D 2023 J Appl Phys. 133 095110Google Scholar

    [24]

    Wang M D, Zhou W Y, Bi L, Qiu C Y, Ke M Z, Liu Z Y 2020 Nat. Commun. 11 3000Google Scholar

    [25]

    Huo S Y, Xie G H, Qiu S J, Gong X C, Fan S Z, Fu C M, Li Z Y 2022 Mech. Adv. Mater. Struct. 29 7772Google Scholar

    [26]

    Wang J Q, Zhang Z D, Yu S Y, Ge H, Liu K F, Wu T, Sun X C, Liu L, Chen H Y, He C 2022 Nat. Commun. 13 1324Google Scholar

    [27]

    Liu S, Deng W Y, Huang X Q, Lu J Y, Ke M Z, Liu Z Y 2022 Phys. Rev. Appl. 18 034066Google Scholar

    [28]

    Chen Y, Guo Z, Liu Y 2024 J. Phys. D: Appl. Phys. 57 465306.Google Scholar

    [29]

    王艳锋 2015 博士学位论文 (北京: 北京交通大学)

    Wang Y F 2015 Ph. D. Dissertation (Beijin: Beijinjiaotong University

    [30]

    Lai Y, Zhang Z Q 2003 Appl. Phys. Lett. 83 3900-Google Scholar

    [31]

    Mei J, Liu Z Y, Shi J, et al. 2003 Phys. Rev. B. 67 245107Google Scholar

  • 图 1  声子晶体模型示意图

    Fig. 1.  Schematic diagram of the phonon crystal model.

    图 2  面外弹性波模式的能带结构图 (a) 当$ {a_1} > {a_2} $时, 几何模型及能带图, 阴影部分表示带隙; (b) 当$ {a_1}={a_2} $时, 几何模型及能带结构; (c) 当$ {a_1} < {a_2} $时, 几何模型及能带结构

    Fig. 2.  Energy band structure diagrams of the out-of-plane body elastic wave mode: (a) When $ {a_1} > {a_2} $, geometric model energy band diagram and its band gap (shaded); (b) when $ {a_1}={a_2} $, geometric model and energy band structure; (c) when $ {a_1} < {a_2} $, geometric model and energy band structure.

    图 3  拓扑相变图 (a) 3组$K^+ $和$K^- $特征态频率随着r的变化; (b)第1频段的谷态本征位移场图; (c)第2频段的谷态本征位移场图; (d)第3频段的谷态本征位移场图

    Fig. 3.  Topological phase transition diagrams: (a) Variation of 3 sets of $ K^+ $ and $K^- $ eigenstate frequencies with r ; (b) valley eigenshift field map for the first frequency band; (c) valley eigenshift field map for the second frequency band; (d) valley eigenshift field map for the third frequency band.

    图 4  拓扑异质结构示意图

    Fig. 4.  Schematic diagram of topological heterogeneous structure.

    图 5  (a) U1U2U3型超胞投影能带; (b) kx = 0.6时91.4 kHz, 300.9 kHz, 435.2 kHz三个频段内U1U2U3型超胞的谷波导态; (c) U3U2U1型超胞投影能带; (d) kx = 0.6时82.9 kHz, 306.9 kHz, 436.7 kHz三个频段内U3U2U1型超胞的谷波导态

    Fig. 5.  (a) Projected energy bands of U1U2U3-type supercells; (b) the valley waveguide states of U1U2U3-type supercells at 91.4 kHz, 300.9 kHz, and 435.2 kHz bands for kx = 0.6; (c) the projected energy bands of U3U2U1-type supercells; (d) the valley waveguide states of U3U2U1-type supercells at 82.9 kHz, 306.9 kHz, and 436.7 kHz bands for kx = 0.6.

    图 6  面外弹性波模式的波导输运 (a) A_{15}|B_5 |C_{15}型波导, 在左侧施加激励的${u_z}$绝对值场图; (b) A_{15}|B_15 |C_{15}型波导, 在左侧施加激励的${u_z}$绝对值场图; (c) A_{15}|B_n|C_{15}型波导, 波导频宽随着B域层数n的变化; (d) A_{15}|C_15 |A_{15}型波导, 在左侧施加激励的${u_z}$绝对值场图

    Fig. 6.  Waveguide transmission in the out-of-plane elastic wave mode: (a) ${u_z}$ absolute value field plot for waveguide type A_{15}|B_5 |C_{15} with excitation applied on the left side. (b) ${u_z}$ absolute value field plot for waveguide type A_{15}|B_15 |C_{15} with excitation applied on the left side. (c) Variation of waveguide frequency band of A_{15}|B_n|C_{15} waveguide with the number of B-domain layers n. The waveguide frequency band is the same as the number of II-domain layers. (d) ${u_z}$ absolute value field plot for waveguide type A_{15}|C_15 |A_{15} with excitation applied on the left side.

    图 7  (a)引入缺陷的结构示意图; (b)线元激发的带缺陷的面外偏振弹性波模式输运

    Fig. 7.  (a) Schematic of the structure with introduced defects; (b) elastic wave mode transmission of an out-of-plane polarizer with defects excited by a line element.

    图 8  (a) 能量汇聚器示意图; (b) ABC型能量汇聚器的${u_z}$绝对值场线结果图; (c) ABC型2个线元能量测量结果

    Fig. 8.  (a) Schematic diagram of the energy aggregator; (b) plot of ${u_z}$ absolute value field line results for ABC-type energy aggregator; (c) energy measurement results of ABC-type 2 line element.

    图 9  能量分束器的${u_z}$绝对值场图 (a) 分束结构示意图; (b) ABC型能量分束器的${u_z}$绝对值场图

    Fig. 9.  ${u_z}$ absolute value field diagram of the energy beam splitter: (a) Schematic diagram of the beam splitting structure; (b) ${u_z}$ absolute value field diagram of the ABC-type energy beam splitter.

    Baidu
  • [1]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [2]

    Moore J E 2010 Nature 464 194Google Scholar

    [3]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124Google Scholar

    [4]

    Miniaci M, Pal R, Morvan B, Ruzzene M 2018 Phys. Rev. X 8 031074Google Scholar

    [5]

    Zhou W J, Wu B, Su Y, Liu D Y, Chen W Q, Bao R H 2021 Mech. Adv. Mater. Struct. 28 221Google Scholar

    [6]

    Zeng Y, Zhang S Y, Zhou H T, et al. 2021 Mater. Des. 208 109906Google Scholar

    [7]

    Wang K, Zhou J X, Chang Y P, Ouyang H J, Xu D L, Yang Y 2020 Nonlinear Dyn. 101 755Google Scholar

    [8]

    Ding Y J, Peng Y G, Zhu Y F, et al. 2019 Phys. Rev. Lett. 122 014302Google Scholar

    [9]

    Yang Z J, Gao F, Shi X H, Lin X, Gao Z, Chong Y D, Zhang B L 2015 Phys. Rev. Lett. 114 114301Google Scholar

    [10]

    Wang P, Lu L, Bertoldi K 2015 Phys. Rev. Lett. 115 104302Google Scholar

    [11]

    Gao N, Qu S C, Si L, Wang J, Chen W Q 2021 Appl. Phys. Lett. 118 063502Google Scholar

    [12]

    Chen Y F, Meng F, Huang X D 2021 Mech. Syst. Signal Process. 146 107054Google Scholar

    [13]

    Huo S Y, Chen J J, Huang H B, Wei Y J, Tan Z H, Feng L Y, Xie X P 2021 Mech. Syst. Signal Process. 154 107543Google Scholar

    [14]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369Google Scholar

    [15]

    Brendel C, Peano V, Painter O, Marquardt F 2018 Phys. Rev. B 97 020102Google Scholar

    [16]

    Lin J H, Qi Y J, He Z J, Bi R G, Dong K 2024 Appl. Phys. Lett. 124 082202Google Scholar

    [17]

    王一鹤, 张志旺, 程营, 刘晓峻 2019 68 227805Google Scholar

    Wang Y H, Zhang Z W, Cheng Y, Liu X J 2019 Acta Phys. Sin. 68 227805Google Scholar

    [18]

    贾鼎, 葛勇, 袁寿其, 孙宏祥 2019 68 224301Google Scholar

    Jia D, Ge Y, Yuan S Q, Sun H X 2019 Acta Phys. Sin. 68 224301Google Scholar

    [19]

    郑周甫, 尹剑飞, 温激鸿, 郁殿龙 2020 69 156201Google Scholar

    Zheng Z F, Yin J F, Wen J H, Yu D L 2020 Acta Phys. Sin. 69 156201Google Scholar

    [20]

    Jiang Z, Zhou Y Y, Zheng S J, Liu J T, Xia B Z 2023 Int. J. Mech. Sci. 255 108464Google Scholar

    [21]

    Huo S, Chen J, Huang H, 2017 Sci. Rep. 7 10335Google Scholar

    [22]

    Yang Z Z, Li X, Peng Y Y, 2020 Phys. Rev. Lett. 125 255502.Google Scholar

    [23]

    Xu G G, Sun X W, Wen X D 2023 J Appl Phys. 133 095110Google Scholar

    [24]

    Wang M D, Zhou W Y, Bi L, Qiu C Y, Ke M Z, Liu Z Y 2020 Nat. Commun. 11 3000Google Scholar

    [25]

    Huo S Y, Xie G H, Qiu S J, Gong X C, Fan S Z, Fu C M, Li Z Y 2022 Mech. Adv. Mater. Struct. 29 7772Google Scholar

    [26]

    Wang J Q, Zhang Z D, Yu S Y, Ge H, Liu K F, Wu T, Sun X C, Liu L, Chen H Y, He C 2022 Nat. Commun. 13 1324Google Scholar

    [27]

    Liu S, Deng W Y, Huang X Q, Lu J Y, Ke M Z, Liu Z Y 2022 Phys. Rev. Appl. 18 034066Google Scholar

    [28]

    Chen Y, Guo Z, Liu Y 2024 J. Phys. D: Appl. Phys. 57 465306.Google Scholar

    [29]

    王艳锋 2015 博士学位论文 (北京: 北京交通大学)

    Wang Y F 2015 Ph. D. Dissertation (Beijin: Beijinjiaotong University

    [30]

    Lai Y, Zhang Z Q 2003 Appl. Phys. Lett. 83 3900-Google Scholar

    [31]

    Mei J, Liu Z Y, Shi J, et al. 2003 Phys. Rev. B. 67 245107Google Scholar

  • [1] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态.  , 2022, 71(4): 044301. doi: 10.7498/aps.71.20211642
    [2] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态.  , 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [3] 高慧芬, 周小芳, 黄学勤. 二维声子晶体中Zak相位诱导的界面态.  , 2021, (): . doi: 10.7498/aps.70.20211642
    [4] 谭自豪, 孙小伟, 宋婷, 温晓东, 刘禧萱, 刘子江. 球形复合柱表面波声子晶体的带隙特性仿真.  , 2021, 70(14): 144301. doi: 10.7498/aps.70.20210165
    [5] 郑周甫, 尹剑飞, 温激鸿, 郁殿龙. 基于声子晶体板的弹性波拓扑保护边界态.  , 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [6] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输.  , 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [7] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体.  , 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [8] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变.  , 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [9] 陈泽国, 吴莹. 声子晶体中的多重拓扑相.  , 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [10] 侯丽娜, 侯志林, 傅秀军. 局域共振型声子晶体中的缺陷态研究.  , 2014, 63(3): 034305. doi: 10.7498/aps.63.034305
    [11] 程聪, 吴福根, 张欣, 姚源卫. 基于局域共振单元实现声子晶体低频多通道滤波.  , 2014, 63(2): 024301. doi: 10.7498/aps.63.024301
    [12] 刘启能, 刘沁. 固-固无限周期声子晶体中SH波全反射隧穿的谐振理论.  , 2013, 62(4): 044301. doi: 10.7498/aps.62.044301
    [13] 丁红星, 沈中华, 李加, 祝雪丰, 倪晓武. 复合兰姆波声子晶体中超宽部分禁带.  , 2012, 61(19): 196301. doi: 10.7498/aps.61.196301
    [14] 刘启能. 一维固-固结构圆柱声子晶体中弹性波的传输特性.  , 2011, 60(3): 034301. doi: 10.7498/aps.60.034301
    [15] 蔡 力, 韩小云, 温熙森. 长波条件下二维声子晶体中的弹性波传播及各向异性.  , 2008, 57(3): 1746-1752. doi: 10.7498/aps.57.1746
    [16] 赵 芳, 苑立波. 二维声子晶体同质位错结缺陷态特性.  , 2006, 55(2): 517-520. doi: 10.7498/aps.55.517
    [17] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式.  , 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [18] 李晓春, 易秀英, 肖清武, 梁宏宇. 三组元声子晶体中的缺陷态.  , 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
    [19] 温激鸿, 王 刚, 刘耀宗, 郁殿龙. 基于集中质量法的一维声子晶体弹性波带隙计算.  , 2004, 53(10): 3384-3388. doi: 10.7498/aps.53.3384
    [20] 齐共金, 杨盛良, 白书欣, 赵 恂. 基于平面波算法的二维声子晶体带结构的研究.  , 2003, 52(3): 668-671. doi: 10.7498/aps.52.668
计量
  • 文章访问数:  365
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-20
  • 修回日期:  2025-01-05
  • 上网日期:  2025-02-14
  • 刊出日期:  2025-03-20

/

返回文章
返回
Baidu
map