搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相互依赖网络上级联故障鲁棒性悖论研究

王建伟 赵乃萱 望楚佩 向玲慧 温廷新

引用本文:
Citation:

相互依赖网络上级联故障鲁棒性悖论研究

王建伟, 赵乃萱, 望楚佩, 向玲慧, 温廷新

Robustness paradox of cascading dynamics in interdependent networks

Wang Jian-Wei, Zhao Nai-Xuan, Wang Chu-Pei, Xiang Ling-Hui, Wen Ting-Xin
cstr: 32037.14.aps.73.20241002
PDF
HTML
导出引用
  • 相互依赖网络中的级联故障过程一直是网络级联分析的一个重要领域. 与以往研究不同的是, 本文考虑了人们在出行时最小化成本的需求, 提出了基于成本约束的网络动力学模型. 同时, 研究了相互依赖网络中不同层次的特性, 定义了不同的负载传播模式. 在此基础上, 本文通过改变网络结构和模型中的参数, 仿真现实中的网络防护策略并验证这些措施的防护效果, 并发现了一些有趣的结论. 一般认为, 增加网络中连边的数量或提高连边的质量可以有效地增强网络的鲁棒性. 然而, 本文的实验结果表明, 这些方法在某些情况下实际上可能会降低网络的鲁棒性. 一方面, 网络中一些特殊边的复活是导致边能力提升网络鲁棒性却下降的主要原因, 因为这些边会破坏原有网络的稳定结构; 另一方面, 无论是提高单层网络的内部连通性来增加网络连边数量, 还是提高相互依赖的网络之间的耦合强度来增加连边数量, 都不能完全有效地提高网络的鲁棒性. 这是因为随着边数量的增加, 网络中可能会出现一些关键边, 这些边会吸引大量的网络负载, 导致网络的鲁棒性下降.
    Cascading failure process in interdependent networks has always been an important field of network cascading analysis. Unlike the previous studies, we take people’s demand for minimizing travel costs into consideration in this article and propose a network dynamics model based on the cost constraint. On this basis, we pay attention to the characteristics of different layers in the interdependent network, and taking the real-world traffic network for example, we define different load propagation modes for different layers. Then, we carry out the simulation experiment on cascade failure in the artificial network. By changing the structure of the network and the parameters in the model, such as the capability value of the network side and the connectivity of the network, we are able to focus on the effects of traditional protection strategies during the simulation and obtain some interesting conclusions. It is generally believed that increasing the quantity of connections in the network or improving the quality of edges will enhance the network robustness effectively. However, our experimental results show that these methods may actually reduce network robustness in some cases. On the one hand, we find that the resurrection of some special edges in the network is the main reason for the capacity paradox, as these edges will destroy the stable structure of the original network. On the other hand, neither improving the internal connectivity of a single-layer network nor enhancing the coupling strength between interdependent networks will effectively improve network robustness. This is because as the number of edges increases, some critical edges may appear in the network, attracting a large amount of the network load and leading the network robustness to decrease. These conclusions remind us that blindly investing resources in network construction cannot achieve the best protection effect. Only by scientifically designing the network structures and allocating network resources reasonably can the network robustness be effectively improved.
      通信作者: 王建伟, jwwang@mail.neu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62076057)资助的课题.
      Corresponding author: Wang Jian-Wei, jwwang@mail.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62076057).
    [1]

    Kinney R, Crucitti P, Albert R, Latora V 2005 Eur. Phys. J. B 46 101Google Scholar

    [2]

    Glanz J, Perez-Pena R https://www.nytimes.com/2003/08/26/nyregion/90-seconds-that-left-tens-of-millions-of-people-in-the-dark.html [2024-7-17]

    [3]

    Turkey P G https://docs.entsoe.eu/dataset/ops-report-turkey-blackout-march-2015 [2024-7-17]

    [4]

    Li Y F, Sansavini G, Zio E 2013 Reliab. Eng. Syst. Saf. 111 195Google Scholar

    [5]

    Hamzelou N, Ashtiani M 2019 Future Gener. Comput. Syst. 94 564Google Scholar

    [6]

    Azzolin A, Dueñas-Osorio L, Cadini F, Zio E 2018 Reliab. Eng. Syst. Saf. 175 196Google Scholar

    [7]

    Li Z, Guo Y H, Xu G A, Hu Z M 2014 Acta Phys. Sin. 63 158901 (in Chinses) [李钊, 郭燕慧, 徐国爱, 胡正名 2014 63 158901]Google Scholar

    Li Z, Guo Y H, Xu G A, Hu Z M 2014 Acta Phys. Sin. 63 158901 (in Chinses)Google Scholar

    [8]

    Artime O, Grassia M, De Domenico M, Gleeson J P, Makse H A, Mangioni G, Perc M, Radicchi F 2024 Nat. Rev. Phys. 6 114Google Scholar

    [9]

    Peng X Z, Yao H, Du J, Wang Z, Ding C 2015 Acta Phys. Sin. 64 048901 (in Chinses) [彭兴钊, 姚宏, 杜军, 王哲, 丁超 2015 64 048901]Google Scholar

    Peng X Z, Yao H, Du J, Wang Z, Ding C 2015 Acta Phys. Sin. 64 048901 (in Chinses)Google Scholar

    [10]

    Alessandro V 2010 Nature 464 984Google Scholar

    [11]

    Sun H, Wang H, Yang M, Reniers G 2024 Saf. Sci. 171 106375Google Scholar

    [12]

    Wu J, You W, Wu T, Xia Y 2018 Physica A 506 451Google Scholar

    [13]

    Zhang L, Du Y 2023 Reliab. Eng. Syst. Saf. 237 109379Google Scholar

    [14]

    Wang J, Zhao N, Xiang L, Wang C 2023 Physica A 627 129128Google Scholar

    [15]

    Zhang Y, Ren W, Feng J, Zhao J, Chen Y, Mi Y 2024 Appl. Energy 371 123655Google Scholar

    [16]

    Wang J, Zhang C, Huang Y, Xin C 2014 Nonlinear Dyn. 78 37Google Scholar

    [17]

    Crucitti P, Latora V, Marchiori M 2004 Phys. Rev. E 69 045104Google Scholar

    [18]

    Albert R, Jeong H, Barabási A L 2000 Nature 406 378Google Scholar

    [19]

    Li M, Li M, Wu Q, Xu X, Shen J 2024 Electr. Power Syst. Res. 235 110844Google Scholar

    [20]

    Zhang C, Xu X, Dui H 2020 Reliab. Eng. Syst. Saf. 202 106963Google Scholar

    [21]

    Wang J, Rong L 2009 Saf. Sci. 47 1332Google Scholar

    [22]

    Huang S, Li C 2024 Int. J. Electr. Power Energy Syst. 160 110136Google Scholar

    [23]

    Wang J 2013 Physica A 392 2257Google Scholar

    [24]

    Dang H, Bai J Z, Lu Y, Li J 2024 Sustainable Cities and Society 114 105749Google Scholar

    [25]

    Zhou M, Liu J 2014 Physica A 410 131Google Scholar

    [26]

    Fu X, Xu X, Li W 2024 Physica A 634 129478Google Scholar

    [27]

    Zhang L, Xu M, Wang S 2023 Reliab. Eng. Syst. Saf. 235 109250Google Scholar

    [28]

    Zheng K, Liu Y, Wang Y, Wang W 2021 Europhys. Lett. 133 48003Google Scholar

    [29]

    Dong G, Gao J, Tian L, Du R, He Y 2012 Phys. Rev. E 85 016112Google Scholar

    [30]

    Wang J, Wang S, Wang Z 2022 Physica A 585 126399Google Scholar

    [31]

    Goh K I, Lee D S, Kahng B, Kim D 2003 Phys. Rev. Lett. 91 148701Google Scholar

    [32]

    Lee D S, Goh K I, Kahng B, Kim D 2004 Physica A 338 84Google Scholar

    [33]

    Watts D J 2002 Proc. Natl. Acad. Sci. U.S.A. 99 5766Google Scholar

    [34]

    Wang X F, Xu J 2004 Phys. Rev. E 70 056113Google Scholar

    [35]

    Motter A E, Lai Y C 2002 Phys. Rev. E 66 065102Google Scholar

    [36]

    Moreno Y, Gómez J B, Pacheco A F 2002 Europhys. Lett. 58 630Google Scholar

    [37]

    Hamedmoghadam H, Jalili M, Vu H L, Stone L 2021 Nat. Commun. 12 1254Google Scholar

    [38]

    Albert R, Albert I, Nakarado G L 2004 Phys. Rev. E 69 025103Google Scholar

    [39]

    Dey P, Mehra R, Kazi F, Wagh S, Singh N M 2016 IEEE Trans. Smart Grid 7 1970Google Scholar

    [40]

    Xue F, Bompard E, Huang T, Jiang L, Lu S, Zhu H 2017 Physica A 482 728Google Scholar

    [41]

    Cai Y, Li Y, Cao Y, Li W, Zeng X 2017 Int. J. Electr. Power Energy Syst. 89 106Google Scholar

    [42]

    Hu Y, Ksherim B, Cohen R, Havlin S 2011 Phys. Rev. E 84 066116Google Scholar

    [43]

    Tan F, Xia Y, Wei Z 2015 Phys. Rev. E 91 052809.Google Scholar

    [44]

    Huang X, Gao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 065101Google Scholar

    [45]

    Wang S, Hong L, Ouyang M, Zhang J, Chen X 2013 Saf. Sci. 51 328Google Scholar

    [46]

    Bureau of Public Roads 1964 Traffic Assignment Manual for Application with a Large, High Speed Compute (Oxford University

    [47]

    Wang J, Xu B, Wu Y 2015 Sci. Rep. 5 13939Google Scholar

    [48]

    Tan S Y, Wu J, Lu L, Li M J, Lu X 2016 Sci. Rep. 6 22916Google Scholar

    [49]

    Wu J, Barahona M, Tan Y J, Deng H Z 2011 IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 41 1244Google Scholar

    [50]

    Dai B T, Qin S, Tan S Y, Liu C C, Mou J H, Deng H Z, Liljeros F Z, Lu X 2023 J. Comput. Sci. 69 102030Google Scholar

    [51]

    Holme P, Kim B J, Yoon C N, Han S K 2002 Phys. Rev. E 65 056109Google Scholar

  • 图 1  耦合网络模型

    Fig. 1.  Interdependent network model.

    图 2  不同$ \alpha $值下BA与WS网络各自失效边数与$ \beta $值的关系(控制$ \gamma $值为1) (a) 不同$ \alpha $值下BA网络整体失效边数变化情况; (b), (c) 不同$ \alpha $值下BA网络上下层失效边数各自变化情况; (d) 不同$ \alpha $值下WS网络整体失效边数变化情况; (e), (f) 不同$ \alpha $值下WS网络上下层失效边数各自变化情况

    Fig. 2.  Cascading failures in BA and WS networks for different values of $ \alpha $ ($ \gamma $ is fixed at 1): (a) Cascading failures in BA networks; (b), (c) cascading failures in the upper and lower levels of BA networks; (d) cascading failures in WS networks; (e), (f) cascading failures in the upper and lower levels of WS networks.

    图 3  不同$ \gamma $值下BA与WS网络各自失效边数与$ \beta $值的关系(控制$ \alpha $值为2) (a) 不同$ \gamma $值下BA网络整体失效边数变化情况; (b), (c) 不同$ \gamma $值下BA网络上下层失效边数各自变化情况; (d) 不同$ \gamma $值下WS网络整体失效边数变化情况; (e), (f) 不同$ \gamma $值下WS网络上下层失效边数各自变化情况

    Fig. 3.  Cascading failures in BA and WS networks for different values of $ \gamma $ ($ \alpha $ is fixed at 2): (a) Cascading failures in BA networks; (b), (c) cascading failures in the upper and lower levels of BA networks; (d) cascading failures in WS networks; (e), (f) cascading failures in the upper and lower levels of WS networks.

    图 4  每层12个节点与24条连边的小型人工网络

    Fig. 4.  Artificial network with 12 nodes and 24 edges on each layer.

    图 5  人工网络的级联失效过程

    Fig. 5.  Cascading failure process in the artificial network.

    图 6  人工网络上层网络$ A $的负载量变化过程 (a)—(d) $ \beta =0. 1 $时的变化情况; (e)—(h) $ \beta =0.2 $时的变化情况; (i)—(l) $ \beta =0. 3 $时的变化情况

    Fig. 6.  Dynamic change of load on network $ A $: (a)–(d) The situation of $ \beta =0. 1 $; (e)–(h) the situation of $ \beta =0.2 $; (i)–(l) the situation of $ \beta =0. 3 $.

    图 7  BA和WS网络中不同$ N{\mathrm{值}} $(网络节点平均度)的级联故障仿真结果(固定$ \alpha $与$ \gamma $) (a)—(d) BA网络的级联故障仿真结果; (e)—(h) WS网络的级联故障仿真结果

    Fig. 7.  Cascading failure simulation in BA and WS networks with different values of $ N $ ($ \alpha $ and $ \gamma $ are fixed): (a)–(d) Cascading failure simulation in BA networks; (e)–(h) cascading failure simulation in WS networks. N is the average degree of network nodes.

    图 8  网络中失效边数百分比与$ N $值的关系(固定$ \alpha $与$ \gamma $) (a) BA网络的仿真结果; (b) WS网络的仿真结果

    Fig. 8.  Correlation between $ N $ and the percentage of failed edges ($ \alpha $ and $ \gamma $ are fixed): (a) Simulation in BA networks; (b) simulation in WS networks.

    图 9  连通性效应的一种解释

    Fig. 9.  An explanation for the connectivity effect.

    图 10  增强网络耦合强度示例

    Fig. 10.  An example to enhance the coupling strength of the network.

    图 11  BA和WS网络中不同$ p $值(网络耦合强度)的级联故障仿真结果(固定$ \alpha $与$ \gamma $) (a)—(d) BA网络的级联故障仿真结果; (e)—(h) WS网络的级联故障仿真结果

    Fig. 11.  Cascading failure simulation in BA and WS networks with different values of $ p $ (coupling strength) ($ \alpha $ and $ \gamma $ are fixed): (a)–(d) Cascading failure simulation in BA networks; (e)–(h) cascading failure simulation in WS networks.

    图 12  不同网络层中$ p $值变化对网络级联故障结果的影响(固定$ \alpha $与$ \gamma $) (a) BA上层网络的级联故障仿真结果; (b) BA下层网络的级联故障仿真结果; (c) WS上层网络的级联故障仿真结果; (d) WS下层网络的级联故障仿真结果

    Fig. 12.  Correlation between $ p $ and failed edges in different layers ($ \alpha $ and $ \gamma $ are fixed): (a) Results of the upper layer of BA networks; (b) results of the lower layer of BA networks; (c) results of the upper layer of WS networks; (d) results of the lower layer of WS networks.

    表 1  级联故障模型组件和过程定义

    Table 1.  Definition of cascading failure model component and process.

    组件或过程 定义方式
    负载流动过程 $ {F}_{i\to j}={F}_{i\to }\cdot \dfrac{{\omega }_{j}/{t}_{ij}^{\gamma }}{\displaystyle\sum\limits_{n\in N\cap n\ne i}^{N} \dfrac{{\omega }_{n}}{{t}_{in}^{\gamma }}} $
    边初始负载 $ {L}_{m}\left(0\right)=\displaystyle \sum\limits_{i, j\in N}{F}_{i\to j}\cdot {R}_{m}^{i, j} $
    边能力 $ {C}_{m}=\left(1+\beta \right){L}_{m}\left(0\right), m\in E $
    级联失效过程 若$ {L}_{m}\left(T\right) > {C}_{m} $, 则删除边$ m $
    鲁棒性统计指标 失效边数$ S $
    下载: 导出CSV

    表 2  BA和WS网络上层网络A失效边数百分比与$ \alpha $值变化对应关系

    Table 2.  Correlation between $ \alpha $ and the percentage of failed edges in the upper layer A of BA and WS network.

    $ \alpha $ = 1$ \alpha $ = 2$ \alpha $ = 3$ \alpha $ = 4
    $ {\mathrm{B}}{\mathrm{A}} $55.25%47.61%40.67%31.03%
    $ {\mathrm{W}}{\mathrm{S}} $39.33%35.54%40.37%38.92%
    下载: 导出CSV

    表 3  BA和WS网络上层网络A负载量百分比与$ \alpha $值变化对应关系

    Table 3.  Correlation between $ \alpha $ and the percentage of loads in the upper layer A of BA and WS network.

    $ \alpha $ = 1$ \alpha $ = 2$ \alpha $ = 3$ \alpha $ = 4
    $ {\mathrm{B}}{\mathrm{A}} $60.74%52.41%46.83%44.11%
    $ {\mathrm{W}}{\mathrm{S}} $45.54%46.70%43.69%41.15%
    下载: 导出CSV

    表 4  BA和WS网络上层网络A通行时间平均值与$ \alpha $值变化对应关系(假定每条边长度为1)

    Table 4.  Correlation between $ \alpha $ and the passage time in the upper layer A of BA and WS network (with the length of each edge equals to 1).

    $ \alpha $ = 1$ \alpha $ = 2$ \alpha $ = 3$ \alpha $ = 4
    $ {\mathrm{B}}{\mathrm{A}} $1.04541.07621.09681.1375
    $ {\mathrm{W}}{\mathrm{S}} $1.11241.12871.09621.0931
    下载: 导出CSV

    表 5  BA和WS网络上层网络A失效边数百分比与$ \gamma $值变化对应关系(当$ \alpha =2 $)

    Table 5.  Correlation between $ \gamma $ and the percentage of failed edges in the upper layer A of BA and WS network when $ \alpha =2 $.

    $ \gamma $ = 1$ \gamma $ = 2$ \gamma $ = 3$ \gamma $ = 4
    $ {\mathrm{B}}{\mathrm{A}} $50.85%50.59%51.25%52.20%
    $ {\mathrm{W}}{\mathrm{S}} $56.30%55.64%50.71%42.02%
    下载: 导出CSV

    表 6  BA和WS网络上层网络A失效边数百分比与$ \gamma $值变化对应关系(当$ \alpha =0 $)

    Table 6.  Correlation between $ \gamma $ and the percentage of failed edges in the upper layer A of BA and WS network when $ \alpha =0 $.

    $ \gamma $ = 1$ \gamma $ = 2$ \gamma $ = 3$ \gamma $ = 4
    $ {\mathrm{B}}{\mathrm{A}} $50.63%52.21%55.84%57.16%
    $ {\mathrm{W}}{\mathrm{S}} $48.15%49.32%55.47%58.94%
    下载: 导出CSV

    表 7  BA网络聚类系数与网络不平均分配指数及失效边数占比变化对应关系

    Table 7.  Corresponding values of unequal distribution index and the proportion of failure edges with the change of clustering coefficient in BA network.

    聚类系数0.23110.46470.6536
    不平均分配指数0.6370.8190.845
    失效边数占比/%59.8084.7284.70
    下载: 导出CSV

    表 8  WS网络聚类系数与网络不平均分配指数及失效边数占比变化对应关系

    Table 8.  Corresponding values of unequal distribution index and the proportion of failure edges with the change of clustering coefficient in WS network.

    聚类系数0.21490.36810.4276
    不平均分配指数0.4520.6110.656
    失效边数占比/%54.7870.4667.07
    下载: 导出CSV
    Baidu
  • [1]

    Kinney R, Crucitti P, Albert R, Latora V 2005 Eur. Phys. J. B 46 101Google Scholar

    [2]

    Glanz J, Perez-Pena R https://www.nytimes.com/2003/08/26/nyregion/90-seconds-that-left-tens-of-millions-of-people-in-the-dark.html [2024-7-17]

    [3]

    Turkey P G https://docs.entsoe.eu/dataset/ops-report-turkey-blackout-march-2015 [2024-7-17]

    [4]

    Li Y F, Sansavini G, Zio E 2013 Reliab. Eng. Syst. Saf. 111 195Google Scholar

    [5]

    Hamzelou N, Ashtiani M 2019 Future Gener. Comput. Syst. 94 564Google Scholar

    [6]

    Azzolin A, Dueñas-Osorio L, Cadini F, Zio E 2018 Reliab. Eng. Syst. Saf. 175 196Google Scholar

    [7]

    Li Z, Guo Y H, Xu G A, Hu Z M 2014 Acta Phys. Sin. 63 158901 (in Chinses) [李钊, 郭燕慧, 徐国爱, 胡正名 2014 63 158901]Google Scholar

    Li Z, Guo Y H, Xu G A, Hu Z M 2014 Acta Phys. Sin. 63 158901 (in Chinses)Google Scholar

    [8]

    Artime O, Grassia M, De Domenico M, Gleeson J P, Makse H A, Mangioni G, Perc M, Radicchi F 2024 Nat. Rev. Phys. 6 114Google Scholar

    [9]

    Peng X Z, Yao H, Du J, Wang Z, Ding C 2015 Acta Phys. Sin. 64 048901 (in Chinses) [彭兴钊, 姚宏, 杜军, 王哲, 丁超 2015 64 048901]Google Scholar

    Peng X Z, Yao H, Du J, Wang Z, Ding C 2015 Acta Phys. Sin. 64 048901 (in Chinses)Google Scholar

    [10]

    Alessandro V 2010 Nature 464 984Google Scholar

    [11]

    Sun H, Wang H, Yang M, Reniers G 2024 Saf. Sci. 171 106375Google Scholar

    [12]

    Wu J, You W, Wu T, Xia Y 2018 Physica A 506 451Google Scholar

    [13]

    Zhang L, Du Y 2023 Reliab. Eng. Syst. Saf. 237 109379Google Scholar

    [14]

    Wang J, Zhao N, Xiang L, Wang C 2023 Physica A 627 129128Google Scholar

    [15]

    Zhang Y, Ren W, Feng J, Zhao J, Chen Y, Mi Y 2024 Appl. Energy 371 123655Google Scholar

    [16]

    Wang J, Zhang C, Huang Y, Xin C 2014 Nonlinear Dyn. 78 37Google Scholar

    [17]

    Crucitti P, Latora V, Marchiori M 2004 Phys. Rev. E 69 045104Google Scholar

    [18]

    Albert R, Jeong H, Barabási A L 2000 Nature 406 378Google Scholar

    [19]

    Li M, Li M, Wu Q, Xu X, Shen J 2024 Electr. Power Syst. Res. 235 110844Google Scholar

    [20]

    Zhang C, Xu X, Dui H 2020 Reliab. Eng. Syst. Saf. 202 106963Google Scholar

    [21]

    Wang J, Rong L 2009 Saf. Sci. 47 1332Google Scholar

    [22]

    Huang S, Li C 2024 Int. J. Electr. Power Energy Syst. 160 110136Google Scholar

    [23]

    Wang J 2013 Physica A 392 2257Google Scholar

    [24]

    Dang H, Bai J Z, Lu Y, Li J 2024 Sustainable Cities and Society 114 105749Google Scholar

    [25]

    Zhou M, Liu J 2014 Physica A 410 131Google Scholar

    [26]

    Fu X, Xu X, Li W 2024 Physica A 634 129478Google Scholar

    [27]

    Zhang L, Xu M, Wang S 2023 Reliab. Eng. Syst. Saf. 235 109250Google Scholar

    [28]

    Zheng K, Liu Y, Wang Y, Wang W 2021 Europhys. Lett. 133 48003Google Scholar

    [29]

    Dong G, Gao J, Tian L, Du R, He Y 2012 Phys. Rev. E 85 016112Google Scholar

    [30]

    Wang J, Wang S, Wang Z 2022 Physica A 585 126399Google Scholar

    [31]

    Goh K I, Lee D S, Kahng B, Kim D 2003 Phys. Rev. Lett. 91 148701Google Scholar

    [32]

    Lee D S, Goh K I, Kahng B, Kim D 2004 Physica A 338 84Google Scholar

    [33]

    Watts D J 2002 Proc. Natl. Acad. Sci. U.S.A. 99 5766Google Scholar

    [34]

    Wang X F, Xu J 2004 Phys. Rev. E 70 056113Google Scholar

    [35]

    Motter A E, Lai Y C 2002 Phys. Rev. E 66 065102Google Scholar

    [36]

    Moreno Y, Gómez J B, Pacheco A F 2002 Europhys. Lett. 58 630Google Scholar

    [37]

    Hamedmoghadam H, Jalili M, Vu H L, Stone L 2021 Nat. Commun. 12 1254Google Scholar

    [38]

    Albert R, Albert I, Nakarado G L 2004 Phys. Rev. E 69 025103Google Scholar

    [39]

    Dey P, Mehra R, Kazi F, Wagh S, Singh N M 2016 IEEE Trans. Smart Grid 7 1970Google Scholar

    [40]

    Xue F, Bompard E, Huang T, Jiang L, Lu S, Zhu H 2017 Physica A 482 728Google Scholar

    [41]

    Cai Y, Li Y, Cao Y, Li W, Zeng X 2017 Int. J. Electr. Power Energy Syst. 89 106Google Scholar

    [42]

    Hu Y, Ksherim B, Cohen R, Havlin S 2011 Phys. Rev. E 84 066116Google Scholar

    [43]

    Tan F, Xia Y, Wei Z 2015 Phys. Rev. E 91 052809.Google Scholar

    [44]

    Huang X, Gao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 065101Google Scholar

    [45]

    Wang S, Hong L, Ouyang M, Zhang J, Chen X 2013 Saf. Sci. 51 328Google Scholar

    [46]

    Bureau of Public Roads 1964 Traffic Assignment Manual for Application with a Large, High Speed Compute (Oxford University

    [47]

    Wang J, Xu B, Wu Y 2015 Sci. Rep. 5 13939Google Scholar

    [48]

    Tan S Y, Wu J, Lu L, Li M J, Lu X 2016 Sci. Rep. 6 22916Google Scholar

    [49]

    Wu J, Barahona M, Tan Y J, Deng H Z 2011 IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 41 1244Google Scholar

    [50]

    Dai B T, Qin S, Tan S Y, Liu C C, Mou J H, Deng H Z, Liljeros F Z, Lu X 2023 J. Comput. Sci. 69 102030Google Scholar

    [51]

    Holme P, Kim B J, Yoon C N, Han S K 2002 Phys. Rev. E 65 056109Google Scholar

  • [1] 高彦丽, 徐维南, 周杰, 陈世明. 二元双层耦合网络渗流行为分析.  , 2024, 73(16): 168901. doi: 10.7498/aps.73.20240454
    [2] 杨武华, 王彩琳, 张如亮, 张超, 苏乐. 高压IGBT雪崩鲁棒性的研究.  , 2023, 72(7): 078501. doi: 10.7498/aps.72.20222248
    [3] 赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收. 连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性.  , 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [4] 潘倩倩, 刘润然, 贾春晓. 具有弱依赖组的复杂网络上的级联失效.  , 2022, (): . doi: 10.7498/aps.71.20210850
    [5] 潘倩倩, 刘润然, 贾春晓. 具有弱依赖组的复杂网络上的级联失效.  , 2022, 71(11): 110505. doi: 10.7498/aps.70.20210850
    [6] 马金龙, 杜长峰, 隋伟, 许向阳. 基于耦合强度的双层网络数据传输能力.  , 2020, 69(18): 188901. doi: 10.7498/aps.69.20200181
    [7] 阮逸润, 老松杨, 王竣德, 白亮, 陈立栋. 基于领域相似度的复杂网络节点重要度评估算法.  , 2017, 66(3): 038902. doi: 10.7498/aps.66.038902
    [8] 高彦丽, 陈世明. 一种全局同质化相依网络耦合模式.  , 2016, 65(14): 148901. doi: 10.7498/aps.65.148901
    [9] 金学广, 寿国础, 胡怡红, 郭志刚. 面向成本-收益好的无标度耦合网络构建方法.  , 2016, 65(9): 098901. doi: 10.7498/aps.65.098901
    [10] 侯绿林, 老松杨, 肖延东, 白亮. 复杂网络可控性研究现状综述.  , 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [11] 陈世明, 吕辉, 徐青刚, 许云飞, 赖强. 基于度的正/负相关相依网络模型及其鲁棒性研究.  , 2015, 64(4): 048902. doi: 10.7498/aps.64.048902
    [12] 彭兴钊, 姚宏, 杜军, 王哲, 丁超. 负荷作用下相依网络中的级联故障.  , 2015, 64(4): 048901. doi: 10.7498/aps.64.048901
    [13] 段东立, 武小悦. 基于可调负载重分配的无标度网络连锁效应分析.  , 2014, 63(3): 030501. doi: 10.7498/aps.63.030501
    [14] 李钊, 郭燕慧, 徐国爱, 胡正名. 复杂网络中带有应急恢复机理的级联动力学分析.  , 2014, 63(15): 158901. doi: 10.7498/aps.63.158901
    [15] 陈世明, 邹小群, 吕辉, 徐青刚. 面向级联失效的相依网络鲁棒性研究.  , 2014, 63(2): 028902. doi: 10.7498/aps.63.028902
    [16] 彭兴钊, 姚宏, 杜军, 丁超, 张志浩. 基于时滞耦合映像格子的多耦合边耦合网络级联抗毁性研究.  , 2014, 63(7): 078901. doi: 10.7498/aps.63.078901
    [17] 任卓明, 邵凤, 刘建国, 郭强, 汪秉宏. 基于度与集聚系数的网络节点重要性度量方法研究.  , 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [18] 缪志强, 王耀南. 基于径向小波神经网络的混沌系统鲁棒自适应反演控制.  , 2012, 61(3): 030503. doi: 10.7498/aps.61.030503
    [19] 王姣姣, 闫华, 魏平. 耦合动力系统的预测投影响应.  , 2010, 59(11): 7635-7643. doi: 10.7498/aps.59.7635
    [20] 曾高荣, 裘正定. 数字水印的鲁棒性评测模型.  , 2010, 59(8): 5870-5879. doi: 10.7498/aps.59.5870
计量
  • 文章访问数:  490
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-18
  • 修回日期:  2024-09-18
  • 上网日期:  2024-09-20
  • 刊出日期:  2024-11-05

/

返回文章
返回
Baidu
map