搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Be掺杂石墨双炔作为锂离子电池负极材料的第一性原理研究

张妮妮 任娟 罗澜茜 刘平平

引用本文:
Citation:

Be掺杂石墨双炔作为锂离子电池负极材料的第一性原理研究

张妮妮, 任娟, 罗澜茜, 刘平平

First principles study of Be-doped graphdiyne as anode material for lithium-ion batteries

Zhang Ni-Ni, Ren Juan, Luo Lan-Xi, Liu Ping-Ping
cstr: 32037.14.aps.73.20240996
PDF
HTML
导出引用
  • 采用基于密度泛函理论的第一性原理方法, 研究了Be在不同位置掺杂的石墨双炔作为锂离子电池负极材料的性能. 通过计算不同掺杂浓度下石墨双炔的形成能和内聚能, 表明Be掺杂的石墨双炔具有很好的实验合成前景. 更重要的是, 掺Be后的石墨双炔具有良好的导电性能. Be掺杂的石墨双炔对单个锂的吸附能为–4.22 eV, 相较于硼, 氮掺杂石墨双炔以及本征石墨双炔大幅度提升. 随着储锂数量的增加, 其对锂的吸附能依旧大于固体锂的内聚能, 并且平均开路电压在0—1 V之间, 充分保证了电池的安全性. 除此之外, 将储锂容量提升为881 mAh/g, 是未掺杂石墨双炔的1.14倍, 是石墨的2.36倍. 同时, 锂在Be掺杂的石墨双炔上扩散性能也有所提升. 对于CIII位掺杂体系, 通过研究低锂浓度、中锂浓度、高锂浓度阶段的离子输运. 研究发现随着锂浓度的增大, 扩散势垒分别为0.38, 0.44, 0.77 eV, 锂离子的移动变得困难, 但依然优于其他元素掺杂的石墨双炔. 综上所述, 铍掺杂石墨双炔作为优异的锂离子电池负极材料具有很大潜力.
    The performances of beryllium-doped graphdiyne (GDY), which is used as an anode material for lithium-ion batteries at various doping sites, are investigated by first-principles methods based on density functional theory. Calculations of the formation energy and cohesive energy of GDY at different doping concentrations indicate that beryllium-doped GDY has excellent prospects for experimental synthesis. More importantly, the beryllium-doped GDY exhibits good electrical conductivity. The adsorption energy for a single lithium atom on beryllium-doped GDY is –4.22 eV, which is significantly higher than that for boron, nitrogen-doped GDY, and intrinsic GDY. As the number of stored lithium atoms increases, the adsorption energy remains greater than the cohesive energy of solid lithium, and the average open-circuit voltage stays between 0 and 1 V, ensuring the safety of the battery. Additionally, the lithium storage capacity is increased to 881 mAh/g, which is 1.14 times that of undoped GDY and 2.36 times that of graphite. Meanwhile, the diffusion performance of lithium on beryllium-doped GDY is also enhanced. For the CIII site doping system, by studying the ion transports at low, medium, and high lithium concentrations, we find that as the lithium concentration increases, the diffusion barriers are 0.38, 0.44, and 0.77 eV, respectively, making lithium ion movement more difficult, but still superior to those of other element-doped GDY. In summary, beryllium-doped GDY has great potential as an excellent anode material for lithium-ion batteries.
      通信作者: 任娟, renjuan@xatu.edu.cn
    • 基金项目: 西安市科技计划(批准号: 21XKJZZ0029N)和陕西省创新能力支撑计划-科技创新团队项目(批准号: 2024RS-CXTD-13)资助的课题.
      Corresponding author: Ren Juan, renjuan@xatu.edu.cn
    • Funds: Project supported by the Science and Technology Planning Project of Xi’an, China (Grant No. 21XKJZZ0029N) and the Innovation Capability Support Plan-Science and Technology Innovation Team Project of Shaanxi Province, China (Grant No. 2024RS-CXTD-13).
    [1]

    Erickson E M, Ghanty C, Aurbach D 2014 J. Phys. Chem. Lett. 5 3313Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I 2008 Nano Lett. 8 2277Google Scholar

    [4]

    Liu X, Wang C Z, Yao Y X, Lu W C, Hupalo M, Tringides M C, Ho K M 2011 Phys. Rev. B 83 235411Google Scholar

    [5]

    Li W, He Y H, Wang L, Ding G H, Zhang Z Q, Lortz R W, Sheng P, Wang N 2011 Phys. Rev. B 84 045431.Google Scholar

    [6]

    Liu X, Hupalo M, Wang C Z, Lu W C, Tringides M C 2012 Phys. Rev. B 86 081414Google Scholar

    [7]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687Google Scholar

    [8]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256Google Scholar

    [9]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009Google Scholar

    [10]

    Zhang H Y, Xia Y Y, Bu H X, Wang X P, Zhang M, Zhao L X, Luo T H, Zhao M W 2013 J. Appl. Phys. 113 044309Google Scholar

    [11]

    He J J, Wang N, Cui Z L, Du H P, Fu L, Huang C S, Yang Z, Shen X Y, Yi Y P, Tu Z Y, Li Y L 2017 Nat. Commun. 8 1172Google Scholar

    [12]

    Urbain F, Smirnov V, Becker J P, et al. 2016 Energ. Environ. Sci. 9 145Google Scholar

    [13]

    Wang N, He J J, Tu Z Y, Yang Z, Zhao F H, Li X D, Huang C D, Wang K, Jiu T G, Yi Y P, Li Y L 2017 Angew. Chem. Int. Edit. 56 10740Google Scholar

    [14]

    Shen X Y, Li X D, Zhao F H, Wang N, Xie C P, He J J, Si W Y, Yi Y Y, Yang Z, Li X F, Lu F S, Huang C S 2019 2D Materials 6 035020Google Scholar

    [15]

    曾雯2020 硕士学位论文 (重庆: 重庆大学)

    Zeng W 2020 M. S. Thesis (Chongqing: Chongqing University

    [16]

    Wang N, Li X D, Tu Z Y, Zhao F H, He J J, Guan Z Y, Huang C D, Yi Y P, Li Y L 2018 Angew. Chem. Int. Edit. 57 3968Google Scholar

    [17]

    Yang Z, Liu R R, Wang N, He J J, Wang K, Li X D, Shen X Y, Wang X, Lv Q, Zhang M J, Luo J, Jiu T G, Hou Z F, Huang C S 2018 Carbon 137 442Google Scholar

    [18]

    Yang Z, Shen X Y, Wang N, He J J, Li X D, Wang X, Hou Z F, Wang K, Gao J, Jiu T G, Huang C S 2019 ACS Appl. Mater. Interfaces 11 2608Google Scholar

    [19]

    Hussain A, Ullah S, Farhan M A 2016 RSC Adv. 6 55990Google Scholar

    [20]

    Ullah S, Hussain A, Syed W, Saqlain M A, Ahmad I, Leenaertse O, Karimf A 2015 RSC Adv. 5 55762Google Scholar

    [21]

    Kost F, Linsmeier Ch, Oberkofler M, Reinelt M, Balden M, Herrmann A, Lindig S 2009 J. Nucl. Mater. 390–391 975Google Scholar

    [22]

    Goldstraß P, Linsmeier C 2000 Nucl. Instrum. Meth. B 161–163 411Google Scholar

    [23]

    Anghel A, Porosnicu C, Lungu C P, Sugiyama K, Krieger C, Roth J 2011 J. Nucl. Mater. 416 9Google Scholar

    [24]

    Ferro Y, Allouche A, Linsmeier C 2013 J. Appl. Phys. 113 213514Google Scholar

    [25]

    Campbell A, Cakmak E, Henry B, et al. 2023 Be 2C Synthesis, Properties, and Ion-beam Irradiation Damage Characterization ORNL/TM-2023/3011

    [26]

    López-Urías F, Terrones M, Terrones H 2015 Carbon 84 317Google Scholar

    [27]

    Ullah S, Denis P A, Sato F 2017 Appl. Mater. Today 9 333Google Scholar

    [28]

    Becke A D 1988 Phys. Rev. A 38 3098Google Scholar

    [29]

    Delley B 1990 J. Chem. Phys. 92 508Google Scholar

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Long M Q, Tang L, Wang D, Li Y L, Shuai Z G 2011 ACS Nano 5 2593Google Scholar

    [32]

    Sun C, Searles D J 2012 J. Phys. Chem. C 116 26222Google Scholar

    [33]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919Google Scholar

    [34]

    Zheng F C, Yang Y, Chen Q W 2014 Nat. Commun. 5 5261Google Scholar

    [35]

    Eftekhari A 2017 Energy Storage Mater. 7 157Google Scholar

    [36]

    蔡梦圆, 唐春梅, 张秋月 2019 68 213601Google Scholar

    Cai M Y, Tang C M, Zhang Q Y 2019 Acta Phys. Sin. 68 213601Google Scholar

    [37]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904Google Scholar

  • 图 1  (a) 石墨双炔几何结构, Be原子的3个不同掺杂位CI, CII及CIII; (b) 本征石墨双炔的能带结构及态密度

    Fig. 1.  (a) Geometric structure of graphdiyne, with three different replacement sites for Be atoms: CI, CII, and CIII; (b) the band structure and density of states of the intrinsic graphdiyne.

    图 2  掺杂位与邻近碳原子之间的键长 (a) CI位; (b) CII位; (c) CIII位; (d) 本征石墨双炔

    Fig. 2.  Bond lengths between doping sites and adjacent carbon atoms: (a) CI site; (b) CII site; (c) CIII site; (d) intrinsic graphdiyne.

    图 3  掺杂浓度分别为(a) 1.39%, (b) 2.78%, (c) 4.17%, (d) 5.56%的CI位掺杂体系弛豫后的几何结构; 掺杂浓度分别为(e) 1.39%, (f) 2.78%, (g) 4.17%, (h) 5.56%的CII位掺杂体系弛豫后的几何结构; 掺杂浓度分别为(i) 1.39%, (g) 2.78%, (k) 4.17%, (l) 5.56%的CIII位掺杂体系弛豫后的几何结构

    Fig. 3.  Relaxed geometric structures of the CI site doping systems with doping concentrations of (a) 1.39%, (b) 2.78%, (c) 4.17%, (d) 5.56%; relaxed geometric structures of the CII site doping systems with doping concentrations of (e) 1.39%, (f) 2.78%, (g) 4.17%, (h) 5.56%; relaxed geometric structures of the CIII site doping systems with doping concentrations of (i) 1.39%, (g) 2.78%, (k) 4.17%, (l) 5.56%.

    图 4  不同掺杂位点Be与相邻C原子的结构(上图)和PDOS图(下图) (a), (b) CI位; (c), (d) CII位; (e), (f) CIII

    Fig. 4.  Structure (upper panel) and PDOS diagram (lower panel) of different doping sites Be and adjacent C atoms: (a), (b) CI site; (c), (d) CII site; (e), (f) CIII site.

    图 5  掺杂浓度为5.56%体系的分子动力学结果及在300 K弛豫5 ps后的结构 (a), (d) CI位; (b), (e) CII位; (c), (f) CIII

    Fig. 5.  Molecular dynamics results of a system with a 5.56% doping concentration and the structure after 5 ps of relaxation at 300 K: (a), (d) CI site; (b), (e) CII site; (c), (f) CIII site.

    图 6  掺杂浓度分别为(a) 1.39%, (b) 2.78%, (c) 4.17%, (d) 5.56%的CI位替换掺杂的能带结构; 掺杂浓度分别为(e) 1.39%, (f) 2.78%, (g) 4.17%, (h) 5.56%的CII位替换掺杂的能带结构; 掺杂浓度分别为(i) 1.39%, (g) 2.78%, (k) 4.17%, (l) 5.56%的CIII位替换掺杂的能带结构

    Fig. 6.  Band structure of CI site replacement doping with doping concentrations of (a) 1.39%, (b) 2.78%, (c) 4.17%, (d) 5.56%; the band structure of CII site replacement doping with doping concentrations of (e) 1.39%, (f) 2.78%, (g) 4.17%, (h) 5.56%; the band structure of CIII site replacement doping with doping concentrations of (i) 1.39%, (g) 2.78%, (k) 4.17%, (l) 5.56%.

    图 7  Be掺杂石墨双炔的静电势图  (a) CI位; (b) CII位; (c) CIII位; (d)本征GDY(静电势的等值面0.0009 |e|/Å3)

    Fig. 7.  Electrostatic potential maps of graphdiyne doped with Be at different sites: (a) CI site; (b) CII site; (c) CIII site; (d) intrinsic graphdiyne (the isosurface of the electrostatic potential is 0.0009 |e|/Å3).

    图 8  单个Li在CI位掺杂的稳定吸附位的(a) 俯视图和(b) 侧视图; 在CII位掺杂的稳定吸附位的(c) 俯视图和(d) 侧视图; 在CIII位掺杂的稳定吸附位的(e) 俯视图和(f) 侧视图

    Fig. 8.  (a) Top view and (b) side view of stable adsorption sites of a single Li atom at the CI site doped system; (c) top view and (d) side view at the CII site doped system; (e) top view and (f) side view at the CIII site doped system.

    图 9  Li吸附在不同原子掺杂石墨双炔及本征石墨双炔吸附能比较 (a) 在CI位掺杂原子; (b) CII位掺杂原子; (c) CIII位掺杂原子

    Fig. 9.  Comparison of adsorption energy of Li adsorption on different atoms doped graphdiyne and intrinsic graphdiyne: (a) Doping atoms at the CI site; (b) CII site doping atoms; (c) CIII site doping atoms.

    图 10  差分电荷密度图的(a), (c), (e)俯视图和(b), (d), (f)侧视图 (a), (b) Li吸附在CI位掺杂体系; (c), (d) Li吸附在CII位掺杂体系; (e), (f) Li吸附在CIII位掺杂体系(等值面为0.011 |e|/Å3)

    Fig. 10.  (a), (c), (e) Top view and (b), (d), (f) side view of the different charge density: (a), (b) the adsorption of Li atom on the CI doped system; (c), (d) the adsorption of Li atom on CII doped system; (e), (f) the adsorption of Li atom on CIII doped system (isosurface = 0.011 |e|/Å3).

    图 11  Li在Be掺杂石墨双炔上的平均吸附能随储Li数量的变化

    Fig. 11.  Average adsorption energy of Li on Be-doped graphdiyne with the number of stored Li.

    图 12  最大吸附Li容量结构图 (a) CI位替换掺杂; (b) CII位替换掺杂; (c) CIII位替换掺杂

    Fig. 12.  Maximum adsorption Li capacity structure: (a) CI site doping; (b) CII site doping; (c) CIII site doping.

    图 13  Be掺杂石墨双炔的开路电压随储Li容量的变化

    Fig. 13.  Change of open circuit voltage (OCV) of Be doped graphdiyne with storage Li capacity.

    图 14  (a)—(c) Be掺杂石墨双炔最大Li容量的分子动力学结果以及(d)—(f)在300 K弛豫5 ps后的结构 (a), (d) CI位; (b), (e) CII位; (c), (f) CIII

    Fig. 14.  (a)–(c) Molecular dynamics results of the maximum Li capacities of Be doped graphdiyne and (d)–(f) the structure after 5 ps of relaxation at 300 K: (a), (d) CI site; (b), (e) CII site; (c), (f) CIII site.

    图 15  Li在Be掺杂石墨双炔上的扩散路径(第1和第3行)和对应的能量曲线图(第2和第4行) (a)—(d) CI位替换掺杂; (e)—(h) CII位替换掺杂; (i)—(l) CIII位替换掺杂

    Fig. 15.  Diffusion path (the first and the third rows) and corresponding energy curve (the second and the fourth rows) of Li on Be doped graphdiyne: (a)–(d) CI site doping; (e)–(h) CII site doping; (i)–(l) CIII site doping.

    图 16  Li在本征石墨双炔上的扩散路径和对应的能量曲线图 (a) 扩散路径一; (b) 路径一对应的势垒; (c) 扩散路径二; (d) 路径二对应的势垒

    Fig. 16.  Li diffusion path on intrinsic graphdiyne and the corresponding energy curve: (a) Diffusion path I; (b) path I corresponding barrier; (c) diffusion path II; (d) path II corresponding barrier.

    图 17  Li吸附在不同原子掺杂石墨双炔及本征石墨双炔扩散势垒比较 (a) CI位掺杂; (b) CIII位掺杂

    Fig. 17.  Comparison of Li adsorption on different atoms doped graphdiyne and intrinsic graphdiyne diffusion barriers: (a) CI site doping; (b) CIII site doping.

    图 18  中锂高锂浓度的扩散路径和对应的能量曲线图 (a) 中锂扩散路径; (b) 中锂对应的势垒; (c) 高锂扩散路径; (d) 高锂对应的势垒

    Fig. 18.  Diffusion path and corresponding energy profiles for the medium-high lithium concentration: (a) Medium lithium diffusion path; (b) the barrier corresponding to the medium lithium; (c) high lithium diffusion path; (d) the barrier corresponding to the high lithium level.

    表 1  CI, CII, CIII位掺杂不同浓度的Be原子构型形成能(单位: eV)

    Table 1.  Formation energies of Be atoms at different concentrations of CI, CII, CIII sites doping (unit: eV).

    掺杂位替换1个Be(1.39%)替换2个Be(2.78%)替换3个Be(4.17%)替换4个Be(5.56%)
    CI1.280.790.790.63
    CII0.830.360.400.25
    CIII1.040.800.810.66
    下载: 导出CSV

    表 2  不同掺杂浓度下内聚能(单位: eV)

    Table 2.  Cohesive energy at different doping concentrations (unit: eV).

    掺杂位 替换1个Be(1.39%) 替换2个Be(2.78%) 替换3个Be(4.17%) 替换4个Be(5.56%)
    CI –7.816 –7.729 –7.636 –7.552
    CII –7.822 –7.741 –7.652 –7.572
    CIII –7.819 –7.729 –7.635 –7.550
    下载: 导出CSV
    Baidu
  • [1]

    Erickson E M, Ghanty C, Aurbach D 2014 J. Phys. Chem. Lett. 5 3313Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I 2008 Nano Lett. 8 2277Google Scholar

    [4]

    Liu X, Wang C Z, Yao Y X, Lu W C, Hupalo M, Tringides M C, Ho K M 2011 Phys. Rev. B 83 235411Google Scholar

    [5]

    Li W, He Y H, Wang L, Ding G H, Zhang Z Q, Lortz R W, Sheng P, Wang N 2011 Phys. Rev. B 84 045431.Google Scholar

    [6]

    Liu X, Hupalo M, Wang C Z, Lu W C, Tringides M C 2012 Phys. Rev. B 86 081414Google Scholar

    [7]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687Google Scholar

    [8]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256Google Scholar

    [9]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009Google Scholar

    [10]

    Zhang H Y, Xia Y Y, Bu H X, Wang X P, Zhang M, Zhao L X, Luo T H, Zhao M W 2013 J. Appl. Phys. 113 044309Google Scholar

    [11]

    He J J, Wang N, Cui Z L, Du H P, Fu L, Huang C S, Yang Z, Shen X Y, Yi Y P, Tu Z Y, Li Y L 2017 Nat. Commun. 8 1172Google Scholar

    [12]

    Urbain F, Smirnov V, Becker J P, et al. 2016 Energ. Environ. Sci. 9 145Google Scholar

    [13]

    Wang N, He J J, Tu Z Y, Yang Z, Zhao F H, Li X D, Huang C D, Wang K, Jiu T G, Yi Y P, Li Y L 2017 Angew. Chem. Int. Edit. 56 10740Google Scholar

    [14]

    Shen X Y, Li X D, Zhao F H, Wang N, Xie C P, He J J, Si W Y, Yi Y Y, Yang Z, Li X F, Lu F S, Huang C S 2019 2D Materials 6 035020Google Scholar

    [15]

    曾雯2020 硕士学位论文 (重庆: 重庆大学)

    Zeng W 2020 M. S. Thesis (Chongqing: Chongqing University

    [16]

    Wang N, Li X D, Tu Z Y, Zhao F H, He J J, Guan Z Y, Huang C D, Yi Y P, Li Y L 2018 Angew. Chem. Int. Edit. 57 3968Google Scholar

    [17]

    Yang Z, Liu R R, Wang N, He J J, Wang K, Li X D, Shen X Y, Wang X, Lv Q, Zhang M J, Luo J, Jiu T G, Hou Z F, Huang C S 2018 Carbon 137 442Google Scholar

    [18]

    Yang Z, Shen X Y, Wang N, He J J, Li X D, Wang X, Hou Z F, Wang K, Gao J, Jiu T G, Huang C S 2019 ACS Appl. Mater. Interfaces 11 2608Google Scholar

    [19]

    Hussain A, Ullah S, Farhan M A 2016 RSC Adv. 6 55990Google Scholar

    [20]

    Ullah S, Hussain A, Syed W, Saqlain M A, Ahmad I, Leenaertse O, Karimf A 2015 RSC Adv. 5 55762Google Scholar

    [21]

    Kost F, Linsmeier Ch, Oberkofler M, Reinelt M, Balden M, Herrmann A, Lindig S 2009 J. Nucl. Mater. 390–391 975Google Scholar

    [22]

    Goldstraß P, Linsmeier C 2000 Nucl. Instrum. Meth. B 161–163 411Google Scholar

    [23]

    Anghel A, Porosnicu C, Lungu C P, Sugiyama K, Krieger C, Roth J 2011 J. Nucl. Mater. 416 9Google Scholar

    [24]

    Ferro Y, Allouche A, Linsmeier C 2013 J. Appl. Phys. 113 213514Google Scholar

    [25]

    Campbell A, Cakmak E, Henry B, et al. 2023 Be 2C Synthesis, Properties, and Ion-beam Irradiation Damage Characterization ORNL/TM-2023/3011

    [26]

    López-Urías F, Terrones M, Terrones H 2015 Carbon 84 317Google Scholar

    [27]

    Ullah S, Denis P A, Sato F 2017 Appl. Mater. Today 9 333Google Scholar

    [28]

    Becke A D 1988 Phys. Rev. A 38 3098Google Scholar

    [29]

    Delley B 1990 J. Chem. Phys. 92 508Google Scholar

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Long M Q, Tang L, Wang D, Li Y L, Shuai Z G 2011 ACS Nano 5 2593Google Scholar

    [32]

    Sun C, Searles D J 2012 J. Phys. Chem. C 116 26222Google Scholar

    [33]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919Google Scholar

    [34]

    Zheng F C, Yang Y, Chen Q W 2014 Nat. Commun. 5 5261Google Scholar

    [35]

    Eftekhari A 2017 Energy Storage Mater. 7 157Google Scholar

    [36]

    蔡梦圆, 唐春梅, 张秋月 2019 68 213601Google Scholar

    Cai M Y, Tang C M, Zhang Q Y 2019 Acta Phys. Sin. 68 213601Google Scholar

    [37]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904Google Scholar

  • [1] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化.  , 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [2] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法.  , 2021, (): . doi: 10.7498/aps.70.20211619
    [3] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比.  , 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [4] 彭劼扬, 王家海, 沈斌, 李浩亮, 孙昊明. 纳米颗粒的表面效应和电极颗粒间挤压作用对锂离子电池电压迟滞的影响.  , 2019, 68(9): 090202. doi: 10.7498/aps.68.20182302
    [5] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制.  , 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [6] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究.  , 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [7] 庞辉. 基于扩展单粒子模型的锂离子电池参数识别策略.  , 2018, 67(5): 058201. doi: 10.7498/aps.67.20172171
    [8] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法.  , 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [9] 彭颖吒, 张锴, 郑百林, 李泳. 广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析.  , 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [10] 黄亮, 李建远. 基于单粒子模型与偏微分方程的锂离子电池建模与故障监测.  , 2015, 64(10): 108202. doi: 10.7498/aps.64.108202
    [11] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性.  , 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [12] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究.  , 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [13] 窦俊青, 康雪雅, 吐尔迪·吾买尔, 华宁, 韩英. Mn掺杂LiFePO4的第一性原理研究.  , 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [14] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响.  , 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [15] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究.  , 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [16] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2.  , 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [17] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究.  , 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [18] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究.  , 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [19] 李佳, 杨传铮, 张熙贵, 张建, 夏保佳. 石墨/Li(Ni1/3Co1/3Mn1/3)O2电池充放电过程中电极材料的XRD研究.  , 2009, 58(9): 6573-6581. doi: 10.7498/aps.58.6573
    [20] 侯柱锋, 刘慧英, 朱梓忠, 黄美纯, 杨 勇. 锂离子电池负极材料CuSn的Li嵌入性质的研究.  , 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
计量
  • 文章访问数:  520
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-17
  • 修回日期:  2024-09-06
  • 上网日期:  2024-09-25
  • 刊出日期:  2024-11-05

/

返回文章
返回
Baidu
map