搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内流可视超声速喷管边界层实验研究

曾瑞童 易仕和 陆小革 赵玉新 张博 冈敦殿

引用本文:
Citation:

内流可视超声速喷管边界层实验研究

曾瑞童, 易仕和, 陆小革, 赵玉新, 张博, 冈敦殿

Experimental study on boundary layer of internal flow visible supersonic nozzle

Zeng Rui-Tong, Yi Shi-He, Lu Xiao-Ge, Zhao Yu-Xin, Zhang Bo, Gang Dun-Dian
PDF
HTML
导出引用
  • 为观察喷管收缩扩张型面上边界层发展演化现象, 研究超声速喷管内流场, 本文采用传统特征线方法设计喷管型面, 设计并制造了内流可视的超声速风洞. 通过数值计算和实验测量的方式验证了风洞喷管出口流场均匀稳定, 马赫数均方根偏差均优于国军标合格标准; 利用纳米粒子示踪平面激光散射技术, 开展内流可视超声速喷管的流动显示试验, 获取了喷管内全流场精细结构图像; 通过图像处理技术提取边界层与主流交界面, 采用分形维数的方法分析边界层状态, 定位边界层转捩位置. 结果表明: 喷管型面的开始转捩位置比喷管上平直壁面更加靠近下游; 分形维数可以定性地判断边界层的流动状态, 对于层流边界层和转捩初期的发卡涡需要结合边界层厚度进行区分.
    The high-frequency pulsation noise generated by the turbulent boundary layer on the wall of a Laval nozzle can significantly affect the quality of the flow field at the nozzle outlet. In this study, a supersonic wind tunnel with visible internal flow is designed and fabricated to observe the development and evolution of the boundary layer on the contraction and expansion surfaces of a Laval nozzle, as well as to study the flow field inside the supersonic nozzle. The subsonic, transonic and supersonic profiles of the nozzle are designed by bicubic curve, Hall method and classical characteristic line method respectively. The results of numerical calculation and total pressure measurement show that the flow field at the nozzle outlet of the wind tunnel is uniform and stable, and the deviation of Mach-number-root mean square is better than the qualified level of China’s national military standard. Nanoparticle-tracer based planar laser scattering (NPLS) technology is used to carry out the flow display test of the internal flow visual supersonic nozzle, and the fine structure image of the whole flow field in the nozzle is obtained. The image clearly shows the development and evolution of the boundary layer in the nozzle. The interface between boundary layer and main stream and the wall curve of nozzle transition region are extracted by image processing technology. The fractal dimension of the extracted boundary layer contour is calculated, thereby establishing the corresponding relationship between the fractal dimension and the boundary layer state, and determining the transition position of the boundary layer. The results show that the transition position of the nozzle profile is closer to downstream than that of the nozzle straight wall. The fractal dimension can qualitatively judge the flow state of the boundary layer; however, it is necessary to distinguish between laminar boundary layers and hairpin vortices in the initial transition stage by considering the thickness of boundary layer.
      通信作者: 陆小革, luxiaoge18@163.com ; 张博, zhangb@nudt.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金 (批准号: 12202489)和湖南省自然科学基金(批准号: 2022JJ30652)资助的课题.
      Corresponding author: Lu Xiao-Ge, luxiaoge18@163.com ; Zhang Bo, zhangb@nudt.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12202489) and the Natural Science Foundation of Hunan Province, China (Grant No. 2022JJ30652).
    [1]

    Schneider S P 2008 J. Spacecraft Rockets 45 641Google Scholar

    [2]

    Lobb R K, Winkler E M, Persh J 1955 J. Aeronaut. Sci. 22 1Google Scholar

    [3]

    Stainback P C, Anders J B, Harvey W D, Cary A M, Harris J E 1974 AIAA Paper 74 136

    [4]

    Harvey W, Stainback P, Anders J B, Cary A 1975 AIAA J. 13 307Google Scholar

    [5]

    于淼 2007 硕士学位论文 (合肥: 中国科学技术大学)

    Yu M 2007 M. S. Thesis (Hefei: University of Science and Technology of China

    [6]

    何成军, 李建强, 范召林, 李耀华, 高荣钊, 梁锦敏, 苗磊 2020 推进技术 41 537Google Scholar

    He C J, Li J Q, Fan Z L, Li Y H, Gao R Z, Liang J M, Miao L 2020 J. Propul. Technol. 41 537Google Scholar

    [7]

    王成鹏, 杨锦富, 程川, 王文硕, 徐培, 杨馨, 焦运, 程克明 2019 实验流体力学 33 11Google Scholar

    Wang C P, Yang J F, Cheng C, Wang W S, Xu P, Yang Q, Jiao Y, Cheng K M 2019 J. Exp. Fluid Mech. 33 11Google Scholar

    [8]

    Kiselev N, Malastovskii N, Zditovets A, Vinogradov Y A 2023 High Temp. 61 535Google Scholar

    [9]

    荣臻, 胡文杰, 邱云龙, 张玉剑, 王亦庄, 江中正, 陈伟芳 2022 空天防御 5 58Google Scholar

    Rong Z, Hu W J, Qiu Y L, Zhang Y J, Wang Y Z, Jiang Z Z, Chen W F 2022 Air Space Defense 5 58Google Scholar

    [10]

    唐志共, 陈德江, 朱超, 曾令国, 吴锦水 2023 空气动力学学报 41 28Google Scholar

    Tang Z G, Chen D J, Zhu C, Zeng L G, Wu J S 2023 Acta Aerodyn. Sin. 41 28Google Scholar

    [11]

    谢飞, 郭雷涛, 许晓斌, 凌岗 2022 推进技术 43 200806Google Scholar

    Xie F, Guo L T, Xu X B, Ling G 2022 J. Propul. Technol. 43 200806Google Scholar

    [12]

    陆小革 2020 博士学位论文 (长沙: 国防科技大学)

    Lu X G 2020 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [13]

    陆雷, 王翼, 闫郭伟, 范晓樯, 苏丹 2019 推进技术 40 2654Google Scholar

    Lu L, Wang Y, Yan G W, Fan X Q, Su D 2019 J. Propul. Technol. 40 2654Google Scholar

    [14]

    Hall I M 1962 Q. J. Mech. Appl. Math. 15 487Google Scholar

    [15]

    林学东, 胡向鹏, 王辉, 熊波, 巫朝君, 王瑞波 2012 GJB1179A-2012 低速风洞和高速风洞流场品质要求

    Lin X D, Hu X P, Wang H, Xiong B, Wu C J, Wang R B 2012 GJB1179A-2012 Requirement for Flow Quality of Low and High Speed Wind Tunnels

    [16]

    易仕和, 赵玉新, 何霖, 张敏莉 2013 超声速与高超声速喷管设计(北京: 国防工业出版社) 第41页

    Yi S H, Zhao Y X, He L, Zhang M L 2013 Supersonic and Hypersonic Nozzle Design (Beijing: National Defense Industry Press) p41

    [17]

    易仕和, 刘小林, 陆小革, 牛海波, 徐席旺 2020 空气动力学学报 38 348Google Scholar

    Yi S H, Liu X L, Lu X G, Niu H B, Xu X W 2020 Acta Aerodyn. Sin. 38 348Google Scholar

    [18]

    刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海 2018 67 174701Google Scholar

    Liu X L, Yi S H, Niu H B, Lu X G, Zhao X H 2018 Acta Phys. Sin. 67 174701Google Scholar

    [19]

    全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2014 63 084703Google Scholar

    Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z 2014 Acta Phys. Sin. 63 084703Google Scholar

    [20]

    武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 62 184702Google Scholar

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702Google Scholar

    [21]

    王小虎, 易仕和, 付佳, 陆小革, 何霖 2015 64 054706Google Scholar

    Wang X H, Yi S H, Fu J, Lu X G, He L 2015 Acta Phys. Sin. 64 054706Google Scholar

    [22]

    朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰 2014 63 134701Google Scholar

    Zhu Y Z, Yi S H, Kong X P, Quan P C, Chen Z, Tian L F 2014 Acta Phys. Sin. 63 134701Google Scholar

    [23]

    徐席旺 2019 硕士学位论文 (长沙: 国防科学技术大学)

    Xu X W 2019 M. S. Thesis (Changsha: National University of Defense Technology

    [24]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China Ser. E: Technol. Sci. 52 3640Google Scholar

    [25]

    何霖 2011 博士学位论文 (长沙: 国防科学技术大学)

    He L 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology

  • 图 1  喷管网格结构

    Fig. 1.  Nozzle grid structure.

    图 2  喷管对称面马赫数云图

    Fig. 2.  Mach number cloud image of nozzle symmetry surface.

    图 3  喷管中心流线马赫数分布图

    Fig. 3.  Mach number distribution of nozzle direction.

    图 4  喷管出口截面速度云图

    Fig. 4.  Velocity cloud image of nozzle exit section.

    图 5  喷管内流可视的超声速风洞

    Fig. 5.  Supersonic wind tunnel with visible flow in nozzle.

    图 6  达到镜面效果的喷管型面

    Fig. 6.  Nozzle profile to achieve mirror effect.

    图 7  实验设备示意图

    Fig. 7.  Schematic diagram of experimental equipment.

    图 8  FADS系统

    Fig. 8.  FADS system.

    图 9  喷管出口马赫数分布图

    Fig. 9.  Mach number distribution diagram of nozzle outlet.

    图 10  喷管流场NPLS图像

    Fig. 10.  NPLS image of nozzle flow field.

    图 11  转捩区边界层分形维数计算结果(x = 140—260 mm) (a) 转捩区喷管下壁面NPLS图像; (b) 图(a)中边界层与主流的边界; (c) 分形维数沿流向的分布曲线

    Fig. 11.  Fractal dimension of transition boundary layer (x = 140–260 mm): (a) NPLS images of the lower wall of the transition nozzle; (b) boundary between boundary layer and main stream in panel (a); (c) distribution curve of fractal dimension along flow direction.

    图 12  边界层转捩位置分布图

    Fig. 12.  Boundary layer transition location distribution diagram.

    表 1  网格无关性验证结果

    Table 1.  Grid independence verification results.

    $ \overline{\Delta M a} $
    网格数/106 z = 0 z = 30 z = 45
    1.86 0 0 0
    1.40 0.0011 0.0012 0.0159
    0.79 0.0027 0.0034 0.0354
    注: $ \overline{\Delta M a} $为与网格数=1.86×106结果的马赫数平均偏差
    下载: 导出CSV

    表 2  喷管对称面内壁面区域亚-跨-超声速区域的x轴坐标范围

    Table 2.  The x-axis coordinate range of the subsonic transonic supersonic region in the wall area of the nozzle symmetry plane.

    划分区域 亚声速区域(Ma ≤ 0.8) 跨声速区域(0.8 < Ma ≤ 1.4) 超声速区域(Ma > 1.4)
    x轴坐标/mm –150 ≤x < –20 –20 ≤x < 20 20 ≤x < 550
    下载: 导出CSV
    Baidu
  • [1]

    Schneider S P 2008 J. Spacecraft Rockets 45 641Google Scholar

    [2]

    Lobb R K, Winkler E M, Persh J 1955 J. Aeronaut. Sci. 22 1Google Scholar

    [3]

    Stainback P C, Anders J B, Harvey W D, Cary A M, Harris J E 1974 AIAA Paper 74 136

    [4]

    Harvey W, Stainback P, Anders J B, Cary A 1975 AIAA J. 13 307Google Scholar

    [5]

    于淼 2007 硕士学位论文 (合肥: 中国科学技术大学)

    Yu M 2007 M. S. Thesis (Hefei: University of Science and Technology of China

    [6]

    何成军, 李建强, 范召林, 李耀华, 高荣钊, 梁锦敏, 苗磊 2020 推进技术 41 537Google Scholar

    He C J, Li J Q, Fan Z L, Li Y H, Gao R Z, Liang J M, Miao L 2020 J. Propul. Technol. 41 537Google Scholar

    [7]

    王成鹏, 杨锦富, 程川, 王文硕, 徐培, 杨馨, 焦运, 程克明 2019 实验流体力学 33 11Google Scholar

    Wang C P, Yang J F, Cheng C, Wang W S, Xu P, Yang Q, Jiao Y, Cheng K M 2019 J. Exp. Fluid Mech. 33 11Google Scholar

    [8]

    Kiselev N, Malastovskii N, Zditovets A, Vinogradov Y A 2023 High Temp. 61 535Google Scholar

    [9]

    荣臻, 胡文杰, 邱云龙, 张玉剑, 王亦庄, 江中正, 陈伟芳 2022 空天防御 5 58Google Scholar

    Rong Z, Hu W J, Qiu Y L, Zhang Y J, Wang Y Z, Jiang Z Z, Chen W F 2022 Air Space Defense 5 58Google Scholar

    [10]

    唐志共, 陈德江, 朱超, 曾令国, 吴锦水 2023 空气动力学学报 41 28Google Scholar

    Tang Z G, Chen D J, Zhu C, Zeng L G, Wu J S 2023 Acta Aerodyn. Sin. 41 28Google Scholar

    [11]

    谢飞, 郭雷涛, 许晓斌, 凌岗 2022 推进技术 43 200806Google Scholar

    Xie F, Guo L T, Xu X B, Ling G 2022 J. Propul. Technol. 43 200806Google Scholar

    [12]

    陆小革 2020 博士学位论文 (长沙: 国防科技大学)

    Lu X G 2020 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [13]

    陆雷, 王翼, 闫郭伟, 范晓樯, 苏丹 2019 推进技术 40 2654Google Scholar

    Lu L, Wang Y, Yan G W, Fan X Q, Su D 2019 J. Propul. Technol. 40 2654Google Scholar

    [14]

    Hall I M 1962 Q. J. Mech. Appl. Math. 15 487Google Scholar

    [15]

    林学东, 胡向鹏, 王辉, 熊波, 巫朝君, 王瑞波 2012 GJB1179A-2012 低速风洞和高速风洞流场品质要求

    Lin X D, Hu X P, Wang H, Xiong B, Wu C J, Wang R B 2012 GJB1179A-2012 Requirement for Flow Quality of Low and High Speed Wind Tunnels

    [16]

    易仕和, 赵玉新, 何霖, 张敏莉 2013 超声速与高超声速喷管设计(北京: 国防工业出版社) 第41页

    Yi S H, Zhao Y X, He L, Zhang M L 2013 Supersonic and Hypersonic Nozzle Design (Beijing: National Defense Industry Press) p41

    [17]

    易仕和, 刘小林, 陆小革, 牛海波, 徐席旺 2020 空气动力学学报 38 348Google Scholar

    Yi S H, Liu X L, Lu X G, Niu H B, Xu X W 2020 Acta Aerodyn. Sin. 38 348Google Scholar

    [18]

    刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海 2018 67 174701Google Scholar

    Liu X L, Yi S H, Niu H B, Lu X G, Zhao X H 2018 Acta Phys. Sin. 67 174701Google Scholar

    [19]

    全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2014 63 084703Google Scholar

    Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z 2014 Acta Phys. Sin. 63 084703Google Scholar

    [20]

    武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 62 184702Google Scholar

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702Google Scholar

    [21]

    王小虎, 易仕和, 付佳, 陆小革, 何霖 2015 64 054706Google Scholar

    Wang X H, Yi S H, Fu J, Lu X G, He L 2015 Acta Phys. Sin. 64 054706Google Scholar

    [22]

    朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰 2014 63 134701Google Scholar

    Zhu Y Z, Yi S H, Kong X P, Quan P C, Chen Z, Tian L F 2014 Acta Phys. Sin. 63 134701Google Scholar

    [23]

    徐席旺 2019 硕士学位论文 (长沙: 国防科学技术大学)

    Xu X W 2019 M. S. Thesis (Changsha: National University of Defense Technology

    [24]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China Ser. E: Technol. Sci. 52 3640Google Scholar

    [25]

    何霖 2011 博士学位论文 (长沙: 国防科学技术大学)

    He L 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology

  • [1] 贺啸秋, 熊永亮, 彭泽瑞, 徐顺. 旋转肥皂泡热对流能量耗散与边界层特性的数值模拟.  , 2022, 71(20): 204701. doi: 10.7498/aps.71.20220693
    [2] 张博, 何霖, 易仕和. 超声速湍流边界层密度脉动小波分析.  , 2020, 69(21): 214702. doi: 10.7498/aps.69.20200748
    [3] 周建印, 项杰, 黄思训. 确定大气边界层顶高度的新方法及数值实验.  , 2020, 69(9): 090201. doi: 10.7498/aps.69.20191992
    [4] 李强, 赵磊, 陈苏宇, 江涛, 庄宇, 张扣立. 展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究.  , 2020, 69(2): 024703. doi: 10.7498/aps.69.20191155
    [5] 陆昌根, 沈露予, 朱晓清. 压力梯度对壁面局部吹吸边界层感受性的影响研究.  , 2019, 68(22): 224701. doi: 10.7498/aps.68.20190684
    [6] 管仁国, 赵占勇, 黄红乾, 连超, 钞润泽, 刘春明. 冷却倾斜板熔体处理过程边界层分布及流动传热的理论研究.  , 2012, 61(20): 206602. doi: 10.7498/aps.61.206602
    [7] 陈林, 唐登斌, Chaoqun Liu. 转捩边界层中流向条纹的新特性.  , 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [8] 周文平, 万松明, 张庆礼, 殷绍唐, 尤静林, 王媛媛. KTa1-xNbxO3晶体生长固/液边界层结构的微区研究.  , 2010, 59(7): 5085-5090. doi: 10.7498/aps.59.5085
    [9] 邓争志, 黄虎. 表面张力-重力短峰波作用的海底边界层速度二阶解.  , 2010, 59(2): 735-739. doi: 10.7498/aps.59.735
    [10] 莫嘉琪, 刘树德, 唐荣荣. 一类奇摄动非线性方程Robin问题激波的位置.  , 2010, 59(7): 4403-4408. doi: 10.7498/aps.59.4403
    [11] 张艳, 郑连存, 张欣欣. 边界耦合的Marangoni对流边界层问题的近似解析解.  , 2009, 58(8): 5501-5506. doi: 10.7498/aps.58.5501
    [12] 李钢, 李轶明, 徐燕骥, 张翼, 李汉明, 聂超群, 朱俊强. 介质阻挡放电等离子体对近壁区流场的控制的实验研究.  , 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [13] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶.  , 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [14] 郝鹏飞, 姚朝晖, 何 枫. 粗糙微管道内液体流动特性的实验研究.  , 2007, 56(8): 4728-4732. doi: 10.7498/aps.56.4728
    [15] 郑连存, 盛晓艳, 张欣欣. 一类Marangoni对流边界层方程的近似解析解.  , 2006, 55(10): 5298-5304. doi: 10.7498/aps.55.5298
    [16] 李睿劬, 李存标. 关于“平板边界层中湍流的发生与混沌动力学之间的联系”一文中的注记.  , 2005, 54(1): 481-482. doi: 10.7498/aps.54.481
    [17] 李存标. 关于转捩边界层中流向涡的产生.  , 2001, 50(1): 182-184. doi: 10.7498/aps.50.182
    [18] 丁鄂江, 黄祖洽. Boltzmann方程的奇异扰动解法(Ⅲ)——边界层解.  , 1985, 34(2): 213-224. doi: 10.7498/aps.34.213
    [19] 江体乾. 关于非牛顿型流体边界层的研究.  , 1962, 18(4): 224-226. doi: 10.7498/aps.18.224
    [20] 林鸿荪. 片流边界层中气流及热转移.  , 1954, 10(1): 71-88. doi: 10.7498/aps.10.71
计量
  • 文章访问数:  703
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-21
  • 修回日期:  2024-06-17
  • 上网日期:  2024-07-01
  • 刊出日期:  2024-08-20

/

返回文章
返回
Baidu
map