-
基于加工出的Dy3+, Na+: PbGa2S4晶体元件的吸收光谱测试以及Judd-Ofelt理论计算数据, 通过互易法计算出各发光能级间的荧光吸收与发射截面. 通过测试与计算得到的数据, 数值模拟了采用1.3 μm和1.7 μm泵浦源直接抽运Dy3+, Na+: PbGa2S4晶体产生4.3 μm中红外激光的实验方案. 计算分析了激光功率、增益和吸收系数在晶体内的空间分布, 分析比较了泵浦光功率、元件长度和输出镜反射率对输出功率的影响. 模型中在光路中引入2.9 μm级联激光振荡, 以此抽运因为4.3 μm发光堆积在能级6H13/2上的粒子数, 发现其可以有效降低能级6H11/2到6H13/2跃迁的自终止效应, 提高激光输出功率. 计算结果表明: 采用1.3 μm和1.7 μm泵浦源, 当功率都为4 W时, 最大的输出功率分别为103 mW和315 mW, 斜率效率可达到2.8%和8.0%. 数值模拟的结果对下一步晶体元件的改良加工以及光路搭建参数的选取提供了一定的指导意义.According to the absorption spectra of Dy3+, Na+: PbGa2S4 crystal elements, as well as the theoretical calculations obtained from Judd-Ofelt analysis, we derive partial fluorescence absorption and emission cross sections. For energy levels that cannot be directly measured, we employ the reciprocal method to calculate their respective absorption cross-section and emission cross-section. Combing the experimental measurements and the calculation results, the experimental setup, which can generate a 4.3-μm mid-infrared laser through directly pumping dysprosium and Dy3+, Na+: PbGa2S4 crystals by 1.3 μm and 1.7 μm diode lasers, is investigated through numerical simulation. The spatial distributions of laser power, gain coefficient, and absorption coefficient within the crystal are obtained through numerical calculation. Furthermore, the effects of pumping power, crystal length, and output mirror reflectance on laser performance are analyzed. In this model, a 2.9-μm laser oscillation is introduced in the optical path and the changes of output power before and after introduction are observed. Our results demonstrate that the introduction of 2.9-μm laser oscillation effectively facilitates the particle number transfer from the 6H13/2 level to the ground state 6H15/2, thereby reducing the self-terminating phenomenon during the transition between the 6H11/2 and 6H13/2 levels, and enhancing both output power and slope efficiency of the laser system. Numerical results indicate that maximum power output for the 1.3μm diode laser pumping is achieved at 103 mW with a pumping threshold of 12 mW and a slope efficiency of 2.8%, while for the 1.7-μm diode laser pumping, the power output reaches up to 315 mW with a pumping threshold of 46 mW and a slope efficiency of 8%. Additionally, the calculation results show that the optimal crystal length is 17 mm for the 1.3 μm diode laser pumping, and 32 mm for the 1.7 μm diode laser pumping. Finally, the best reflectance value for the output mirror is 0.92. These numerical results are of great significance for guiding the crystal processing and the selection of optical path structure parameters.
-
Keywords:
- mid-infrared laser /
- theoretical modeling /
- PbGa2S4 crystal
[1] Sorokina I T 2003 Solid-State Mid-Infrared Laser Sources (Palo Alto: Springer) pp89–262
[2] 谭改娟, 谢冀江, 张来明, 郭劲, 杨贵龙, 邵春雷, 陈飞, 杨欣欣, 阮鹏 2013 中国光学 6 501
Tan G J, Xie J J, Zhang L M, Guo J, Yang G L, Shao C L, Chen F, Yang X X, Ruan P 2013 Chin. Opt. 6 501
[3] 钟鸣, 任钢 2007 四川兵工学报 28 7
Zhong M, Ren G 2007 J. Ordnance Equip. Eng. 28 7
[4] Ebrahim-Zadeh M, Sorokina I T 2008 NATO Science for Peace and Security Series B: Physics and Biophysics (Bielefeld : Springer) pp161–170
[5] 朱灿林, 康民强, 邓颖, 李威威, 周松, 李剑彬, 郑建刚, 朱启华 2022 激光与红外 52 956Google Scholar
Zhu C L, Kang M Q, Deng Y, Li W W, Zhou S, Li J B, Zhen J G, Zhu Q H 2022 Laser Infrared 52 956Google Scholar
[6] Pan Q K 2015 Chin. Opt. 8 557 [潘其坤 2015 中国光学 8 557]Google Scholar
Pan Q K 2015 Chin. Opt. 8 557Google Scholar
[7] 魏磊, 肖磊, 韩隆, 吴军勇, 王克强 2012 中国激光 39 0702006Google Scholar
Wei L, Xiao L, Han L, Wu J Y, Wang K Q 2012 Chin. J. Lasers 39 0702006Google Scholar
[8] Lippert E 2015 Conference on Lasers and Electro-Optics (CLEO) California, San Jose, May 10–15, 2015 pSW3O.3
[9] 古新安, 朱韦臻, 罗志伟, Angeluts A A, Evdokimov M G, Nazarov M M, Shkurinov A P, Andreev Y M, Lanskii G V, Shaiduko A V 2012 中国光学 5 660
Gu X A, Zhu W Z, Luo Z W, Angeluts A A, Evdokimov M G, Nazarov M M, Shkurinov A P, Andreev Y M, Lanskii G V, Shaiduko A V 2012 Chin. Opt. 5 660
[10] Mirov S, Fedorov V, Moskalev I, Martyshkin D, Kim C 2010 Laser Photon. Rev. 4 21Google Scholar
[11] 张利明, 周寿桓, 赵鸿, 张大勇, 冯宇彤, 李尧, 朱辰, 张昆, 王雄飞 2012 激光与红外 42 360Google Scholar
Zhang L M, Zhou S H, Zhao H, Zhang D Y, Feng Y T, Li Y, Zhu C, Zhang K, Wang X F 2012 Laser Infrared 42 360Google Scholar
[12] Barnes N P, Esterowitz L, Allen R E 1984 Conference on Lasers and Electro-Optics pWA5
[13] Esterowitz L, Rosenblatt G H, Pinto J F 1994 Electron. Lett. 30 1596Google Scholar
[14] Bowman S R, Shaw L B, Feldman B J, Ganem J 1996 IEEE J. Quantum Electron. 32 646Google Scholar
[15] Nostrand M C, Page R H, Payne S A, Krupke W F, Schunemann P G, Isaenko L I 1999 Advanced Solid State Lasers 26 pWD4Google Scholar
[16] Wu K, Pan S L, Wu H P, Yang Z H 2015 J. Mol. Struct. 1082 174Google Scholar
[17] Jelinkova H, Doroshenko M E, Osiko V V, Jelínek M, Šulc J, Němec M, Vyhlídal D, Badikov V V, Badikov D V 2016 Appl. Phys. A 122 738Google Scholar
[18] Majewski M R, Woodward R I, Jackson S D 2020 Laser Photon. Rev. 14 1900195.1Google Scholar
[19] Vincent F, Frédéric J, Maxence L, Martin B, Réal V 2019 Opt. Lett. 44 491Google Scholar
[20] Wang Y C, Jobin F, Duval S, Fortin V, Vallée R 2019 Opt. Lett. 44 395Google Scholar
[21] Ososkov Y, Lee J, Fernandez T T, Fuerbach A, Jackson S D 2023 Opt. Lett. 48 2664Google Scholar
[22] Šulc J, Jelinkova H, Doroshenko M E, Basiev T T, Osiko V V, Badikov V V, Badikov D V 2010 Opt. Lett. 35 3501Google Scholar
[23] Xiao X S, Xu Y T, Guo H T, Wang P F, Cui X X, Lu M, Wang Y S, Peng B 2018 IEEE Photonics J. 10 1501011Google Scholar
[24] Majewski M R, Jackson S D 2016 Opt. Lett. 41 2173Google Scholar
[25] 陈钰清, 王静环 2010 激光原理(第2版) (杭州: 浙江大学出版社)第 122—127页
Chen J Q, Wang J H 2010 Laser Principle (Vol. 2) (Hangzhou: Zhejiang University press) pp122–127
[26] Yu X Z, Huang C B, Ni Y B, Wang Z Y, Wu H X, Hu Q Q, Liu G J, Zhou Q, Wei L L 2023 J. Lumines. 262 119951Google Scholar
[27] Walsh B M, Barnes N P, Bartolo B D 1998 J. Appl. Phys. 83 2772Google Scholar
[28] Payne S A, Chase L L, Smith L K, Kway W L, Krupke W F 1992 IEEE J. Quantum Electron. 28 2619Google Scholar
[29] Carnall W T, Goodman G L, Rajnak K, Rana R 1989 J. Chem. Phys. 90 3443Google Scholar
[30] 康民强, 朱灿林, 邓颖, 朱启华 2022 光学学报 42 0714002Google Scholar
Kang M Q, Zhu C L, Deng Y, Zhu Q H 2022 Acta Opt. Sin. 42 0714002Google Scholar
-
表 1 计算得到的Dy3+, Na+: PbGa2S4部分光谱参数
Table 1. Partial calculated spectral parameters of Dy3+, Na+: PbGa2S4.
$ \lambda/\rm nm $ $E_{\rm ZL}/{\rm cm}^{-1} $ $Z_{\mathrm{l}}/Z_{\mathrm{u}} $ $ {\sigma _{{\mathrm{ab}}}}/(10^{-21}\; \rm cm^2) $ $ {\sigma _{\rm em}}/(10^{-21}\; \rm cm^2) $ 1320 7632 0.83 8.17 8.71 1730 5883 0.91 2.87 4.23 2875 3503 1.13 6.30 7.97 4325 2380 1.24 5.27 9.00 表 2 Dy3+, Na+:PbGa2S4激光器的光谱参数[17,23,26,30]
Table 2. Spectral parameters of Dy3+, Na+:PbGa2S4[17,23,26,30].
Parameter Value Unit Parameter Value Unit $ {\lambda _{{\mathrm{P}}1}} $ 1320 nm $ {\alpha _{{\mathrm{P}}1}} $ 0.299 cm–1 $ {\lambda _{{\mathrm{P}}2}} $ 1730 nm $ {\alpha _{{\mathrm{P}}2}} $ 0.893 cm–1 $ {\lambda _{\mathrm{S}}} $ 4325 nm $ {\tau _4} $ 0.266 ms $ {\lambda _{\mathrm{I}}} $ 2875 nm $ {\tau _3} $ 2.697 ms $ {\sigma _{14}} $ 8.17×10–21 cm–2 $ {\tau _2} $ 6.092 ms $ {\sigma _{41}} $ 8.71×10–21 cm–2 W42 430 s–1 $ {\sigma _{13}} $ 6.87×10–21 cm–2 W32 40 s–1 $ {\sigma _{31}} $ 7.23×10–21 cm–2 W31 320 s–1 $ {\sigma _{12}} $ 6.30×10–21 cm–2 W21 164 s–1 $ {\sigma _{21}} $ 7.97×10–21 cm–2 M43 3000 s–1 $ {\sigma _{23}} $ 5.27×10–21 cm–2 M32 36 s–1 $ {\sigma _{32}} $ 9.00×10–21 cm–2 RS1 0.99 AS 1×10–6 cm2 RS2 0.95 f 400 mm RI1 0.99 L 17 mm RI2 0.96 N 1.26×1026 m3 RP1 0.99 $ \alpha $ 0.2 cm–1 RP2 0.99 -
[1] Sorokina I T 2003 Solid-State Mid-Infrared Laser Sources (Palo Alto: Springer) pp89–262
[2] 谭改娟, 谢冀江, 张来明, 郭劲, 杨贵龙, 邵春雷, 陈飞, 杨欣欣, 阮鹏 2013 中国光学 6 501
Tan G J, Xie J J, Zhang L M, Guo J, Yang G L, Shao C L, Chen F, Yang X X, Ruan P 2013 Chin. Opt. 6 501
[3] 钟鸣, 任钢 2007 四川兵工学报 28 7
Zhong M, Ren G 2007 J. Ordnance Equip. Eng. 28 7
[4] Ebrahim-Zadeh M, Sorokina I T 2008 NATO Science for Peace and Security Series B: Physics and Biophysics (Bielefeld : Springer) pp161–170
[5] 朱灿林, 康民强, 邓颖, 李威威, 周松, 李剑彬, 郑建刚, 朱启华 2022 激光与红外 52 956Google Scholar
Zhu C L, Kang M Q, Deng Y, Li W W, Zhou S, Li J B, Zhen J G, Zhu Q H 2022 Laser Infrared 52 956Google Scholar
[6] Pan Q K 2015 Chin. Opt. 8 557 [潘其坤 2015 中国光学 8 557]Google Scholar
Pan Q K 2015 Chin. Opt. 8 557Google Scholar
[7] 魏磊, 肖磊, 韩隆, 吴军勇, 王克强 2012 中国激光 39 0702006Google Scholar
Wei L, Xiao L, Han L, Wu J Y, Wang K Q 2012 Chin. J. Lasers 39 0702006Google Scholar
[8] Lippert E 2015 Conference on Lasers and Electro-Optics (CLEO) California, San Jose, May 10–15, 2015 pSW3O.3
[9] 古新安, 朱韦臻, 罗志伟, Angeluts A A, Evdokimov M G, Nazarov M M, Shkurinov A P, Andreev Y M, Lanskii G V, Shaiduko A V 2012 中国光学 5 660
Gu X A, Zhu W Z, Luo Z W, Angeluts A A, Evdokimov M G, Nazarov M M, Shkurinov A P, Andreev Y M, Lanskii G V, Shaiduko A V 2012 Chin. Opt. 5 660
[10] Mirov S, Fedorov V, Moskalev I, Martyshkin D, Kim C 2010 Laser Photon. Rev. 4 21Google Scholar
[11] 张利明, 周寿桓, 赵鸿, 张大勇, 冯宇彤, 李尧, 朱辰, 张昆, 王雄飞 2012 激光与红外 42 360Google Scholar
Zhang L M, Zhou S H, Zhao H, Zhang D Y, Feng Y T, Li Y, Zhu C, Zhang K, Wang X F 2012 Laser Infrared 42 360Google Scholar
[12] Barnes N P, Esterowitz L, Allen R E 1984 Conference on Lasers and Electro-Optics pWA5
[13] Esterowitz L, Rosenblatt G H, Pinto J F 1994 Electron. Lett. 30 1596Google Scholar
[14] Bowman S R, Shaw L B, Feldman B J, Ganem J 1996 IEEE J. Quantum Electron. 32 646Google Scholar
[15] Nostrand M C, Page R H, Payne S A, Krupke W F, Schunemann P G, Isaenko L I 1999 Advanced Solid State Lasers 26 pWD4Google Scholar
[16] Wu K, Pan S L, Wu H P, Yang Z H 2015 J. Mol. Struct. 1082 174Google Scholar
[17] Jelinkova H, Doroshenko M E, Osiko V V, Jelínek M, Šulc J, Němec M, Vyhlídal D, Badikov V V, Badikov D V 2016 Appl. Phys. A 122 738Google Scholar
[18] Majewski M R, Woodward R I, Jackson S D 2020 Laser Photon. Rev. 14 1900195.1Google Scholar
[19] Vincent F, Frédéric J, Maxence L, Martin B, Réal V 2019 Opt. Lett. 44 491Google Scholar
[20] Wang Y C, Jobin F, Duval S, Fortin V, Vallée R 2019 Opt. Lett. 44 395Google Scholar
[21] Ososkov Y, Lee J, Fernandez T T, Fuerbach A, Jackson S D 2023 Opt. Lett. 48 2664Google Scholar
[22] Šulc J, Jelinkova H, Doroshenko M E, Basiev T T, Osiko V V, Badikov V V, Badikov D V 2010 Opt. Lett. 35 3501Google Scholar
[23] Xiao X S, Xu Y T, Guo H T, Wang P F, Cui X X, Lu M, Wang Y S, Peng B 2018 IEEE Photonics J. 10 1501011Google Scholar
[24] Majewski M R, Jackson S D 2016 Opt. Lett. 41 2173Google Scholar
[25] 陈钰清, 王静环 2010 激光原理(第2版) (杭州: 浙江大学出版社)第 122—127页
Chen J Q, Wang J H 2010 Laser Principle (Vol. 2) (Hangzhou: Zhejiang University press) pp122–127
[26] Yu X Z, Huang C B, Ni Y B, Wang Z Y, Wu H X, Hu Q Q, Liu G J, Zhou Q, Wei L L 2023 J. Lumines. 262 119951Google Scholar
[27] Walsh B M, Barnes N P, Bartolo B D 1998 J. Appl. Phys. 83 2772Google Scholar
[28] Payne S A, Chase L L, Smith L K, Kway W L, Krupke W F 1992 IEEE J. Quantum Electron. 28 2619Google Scholar
[29] Carnall W T, Goodman G L, Rajnak K, Rana R 1989 J. Chem. Phys. 90 3443Google Scholar
[30] 康民强, 朱灿林, 邓颖, 朱启华 2022 光学学报 42 0714002Google Scholar
Kang M Q, Zhu C L, Deng Y, Zhu Q H 2022 Acta Opt. Sin. 42 0714002Google Scholar
计量
- 文章访问数: 625
- PDF下载量: 23
- 被引次数: 0