-
本文借助外延生长及离子掺杂技术, 基于NaYbF4:2%Er3+微米晶体构建了多种不同的核壳微米盘, 通过降低材料的表面猝灭效应及增强离子间的能量传递效应, 实现了NaYbF4:2%Er3+微米晶体上转换红光发射的增强. 研究结果表明: 在980 nm近红外激光激发下, 构建的NaYbF4:2%Er3+@NaYbF4@NaYF4核-壳-壳微米盘的上转换红光发射强度相比于NaYbF4:2%Er3+微米盘增强了4.6倍, 红绿比由6.3提高至8.1. 当少量Ho3+离子引入到NaYbF4:2%Er3+@NaYbF4:2%Ho3+@NaYF4核-壳-壳微米盘时, Er3+离子与Ho3+离子间相互作用的发生使其上转换红光发射强度相比于NaYbF4:2%Er3+微米盘增强了近6.7倍, 且红绿比更是提高到9.4. 通过对不同核壳微米盘光谱特性和发光动力学的研究, 表明Er3+离子的红光发射增强主要源自于不同核壳结构中Yb3+离子的高效的能量传递有效促进了Er3+离子间的交叉弛豫、Er3+和Yb3+离子间反向能量传递及Ho3+离子向Er3+离子间的能量传递的发生, 进而提高了红光发射能级的粒子数布居. 其研究可为构建具有高效红光发射的上转换微纳晶体提供新途径.The construction of core-shell structure can effectively reduce the quenching effect on the surface of material and regulate ion-ion interaction, which has become one of the effective ways to enhance and regulate the spectral characteristics of rare-earth upconversion luminescent materials. In this paper, a variety of NaYbF4: 2%Er3+ micron core-shell structures are constructed with the help of epitaxial growth technology, effectively improving the red up-conversion emission of Er3+ ions. The prepared microcrystals with core-shell structures are of hexagonal phase microdisks, and their sizes are relatively uniform. In order to better obtain the material spectral data, a confocal microscopic spectroscopy is used to study spectral properties. Under 980 nm near-infrared laser excitation, the red emission intensity of single NaYbF4:2%Er3+@NaYbF4@NaYF4 core-shell-shell microdisk is 4.6 times higher than that of NaYbF4:2%Er3+ micron disk, and the red-to-green ratio increases from 6.3 to 8.1. Meanwhile, Ho3+ ions are introduced into the NaYbF4:2%Er3+@NaYbF4: 2%Ho3+ @NaYF4 core-shell-shell microdisk, and the red emission intensity is nearly 6.7 times higher than that of single NaYbF4: 2%Er3+ microdisk, and the red-to-green ratio increases from 6.3 to 9.4 through the interaction between ions. The microcrystal spectral characteristics and luminescence kinetics of different core-shell structures are studied, showing that the red emission enhancement of Er3+ ions is mainly derived from the construction of different core-shell structures, which can effectively enhance the cross-relaxation between Er3+ ions, the energy back transfer between Yb3+ and Er3+ ions, and the energy transfer from Ho3+ ions to Er3+ ions. The micron core-shell structures with efficient red emission in this study has great application prospects in the fields of luminescence, anti-counterfeiting and optoelectronic devices.
-
Keywords:
- upconversion luminescence /
- core-shell structure /
- energy transfer /
- cross-relaxation
[1] Suo H, Zhu Q, Zhang X, Chen B 2021 Mater. Today Phys. 21 100520Google Scholar
[2] Liu S B, Yan L, Li Q Q, Huang J S, Tao L L, Zhou B 2020 Chem. Eng. J. 397 125451Google Scholar
[3] Zhang C Y, Ji M, Zhou X L, Mi X H, Chen H, Zhang B B, Fu Z K, Zhang Z L 2023 Adv. Funct. Mater. 33 2208561Google Scholar
[4] Zhuang Y X, Chen D R, Chen W J, Zhang W X, Su X, Deng R R, An Z F 2021 Light-Sci. Appl. 10 132Google Scholar
[5] Xiang Y, Zheng S S, Yuan S S, Wang J, Wu Y H, Zhu X H 2022 Mikrochim. Acta 189 120Google Scholar
[6] Zhang Z J, Han Q Y, Lau J W, Xing B G 2020 ACS Mater. Lett. 2 1516Google Scholar
[7] Chihara T, Umezawa M, Miyata K 2019 Sci. Rep. 9 12806Google Scholar
[8] Jiang T, Qin W P, Zhou J 2014 J. Alloys Compd. 593 79Google Scholar
[9] Venkataramanan Mahalingam, Chanchal Hazra, Rafik Naccache, Fiorenzo Vetroneb 2013 J. Mater. Chem. C 1 6536Google Scholar
[10] 何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强 2013 62 237803Google Scholar
He E J, Zheng H R, Gao W, Lu Y, Li J N, Wei Y, Wang D, Zhu G Q 2013 Acta Phys. Sin 62 237803Google Scholar
[11] Sheng W, Yan L, Tan Y Y, Zhao Y, Huang H Z, Zhou B 2023 Adv. Photonics Res. 4 2300172Google Scholar
[12] Wang Z J, Lin S B, Liu Y J, Hou J, Xu X Y, Zhao X 2022 Nanomaterials 12 3288Google Scholar
[13] Gao W, Sun Z Y, Han Q Y, Han S S, Cheng X T, Wang Y K, Yan X W, Dong J 2021 J. Alloys Compd. 857 157578Google Scholar
[14] Sun Y Z, Bi H F, Wang T, Li Z X, Song H N, Sun F L, Zhou G J 2020 Mater. Sci. Eng. , C 261 114674Google Scholar
[15] Peng Y H, Peng J C, Han J J, Wang T H, Yin Z Y, Qiu J B, Wang Q, Yang Z W 2020 J. Rare Earths 38 577Google Scholar
[16] Gao D L, Zhang X Y, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732Google Scholar
[17] Gao W, Zhang C X, Han Q Y, Lu Y R, Yan X W, Wang Y K, Yang Y, Liu J H, Dong J 2022 J. Lumin. 241 118501Google Scholar
[18] Zhao J Y, Sun Y J, Kong X G, Tian L J, Wang Y, Tu L P, Zhao J L, Zhang H 2008 J. Phys. Chem. B 112 15666Google Scholar
[19] Chen Y S, Zhou J P, Jiao Y C, He W, Wang H H, Hao X L, Lu J X, Yang S E 2013 J. Lumin. 134 504Google Scholar
[20] Zhou Z Q, Xue J B, Zhang B P, Wang C, Yang X C, Fan W, Ying L Y, Zheng Z W 2021 Appl. Phys. Lett. 118 173301Google Scholar
[21] Zhang G, Dong H, Wang D, Sun L D, Yan C H 2017 J. Rare Earths 35 1Google Scholar
[22] 高伟, 董军, 王瑞博, 王朝晋, 郑海荣 2016 65 084205Google Scholar
Gao W, Dong J, Wang R B, Wang Z J, Zheng H R 2016 Acta Phys. Sin. 65 084205Google Scholar
[23] Gao D L, Zhang X Y, He E J 2013 J. Alloys Compd. 554 395Google Scholar
[24] M Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, M. P. Hehlen 2000 Phys. Rev. B 61 3337Google Scholar
[25] Xu F, Luo W, Li A H, Sun Z J 2023 J. Lumin. 253 119487Google Scholar
[26] Shang Y F, Hao S W, Lv W Q, Chen T, Tian L, Lei Z T, Yang C H 2018 J. Mater. Chem. C 6 3869Google Scholar
[27] Lee C, Park H, Kim W 2019 Phys. Chem. Chem. Phys. 21 24026Google Scholar
[28] Lin H, Xu D K, Chen Z Y, Li Y J, Xu L Q, Ma Y, Yang S H 2020 Appl. Surf. Sci. 514 146074Google Scholar
[29] Gao W, Xing Y, Chen B H, Shao L, Zhang J J, Yan X W, Han Q Y, Zhang C Y, Liu L, Dong J 2023 J. Alloys Compd. 936 168371Google Scholar
[30] Gao W, Wang B Y, Han Q Y, Gao L, Wang Z J, Sun Z Y, Zhang B, Dong J 2020 J. Alloys Compd. 818 152934Google Scholar
[31] Luwang M N, Ningthoujam R S, Srivastava S K, Vatsa R K 2011 J. Mater. Chem. 21 5326Google Scholar
[32] Cheng X W, Ge H, Wei Y, Huang L 2018 ACS Nano 12 10992Google Scholar
-
图 4 在980 nm激发下, 单个NaYbF4:2%Er3+微米盘及其包覆不同壳层微米盘的 (a)上转换发射光谱(插图为对应发光图案), (b) 红绿比及(c) 红光发射强度的增强倍数
Fig. 4. (a) The UC emission spectra (the insert is corresponding optical micrographs), (b) R/G ratio and (c) enhancement factor of the red emission of the NaYbF4:2%Er3+ microcrystals and coating with different CS structures under the excitation of a 980 nm NIR laser.
图 5 在近红外光980 nm激光激发下, 单个NaYbF4:2%Er3+微米盘及掺杂2%Ho3+离子的不同核壳结构的 (a)上转换发射光谱(插图为对应发光图案), (b)红绿比及(c)红光发射强度的增强倍数
Fig. 5. (a) The UC emission spectra (the insert is corresponding optical micrographs), (b) R/G ratio and (c) enhancement factor of the red emission of the NaYbF4:2%Er3+ microcrystals and coating with different CS structures with doping 2%Ho3+ ions under the excitation of a 980 nm NIR laser.
图 6 在980 nm不同泵浦功率激发下, 单颗粒NaYbF4:2%Er3+, NaYbF4:2%Er3+@NaYbF4:2%Ho3+ 与NaYbF4:2%Er3+@NaYbF4@NaYF4核-壳-壳结构微米盘的上转换发射光谱(插图为其对应发光图案)及其红、绿光发射依赖关系
Fig. 6. Under different pump power excitation at 980 nm, the upconversion emission spectra of a single particle NaYbF4:2%Er3+, NaYbF4:2%Er3+@NaYbF4:2%Ho3+, and NaYbF4:2%Er3+@NaYbF4 @ NaYF4 core-shell-shell micron disks (the corresponding luminescence pattern is inset) and their red and green emission dependencies.
-
[1] Suo H, Zhu Q, Zhang X, Chen B 2021 Mater. Today Phys. 21 100520Google Scholar
[2] Liu S B, Yan L, Li Q Q, Huang J S, Tao L L, Zhou B 2020 Chem. Eng. J. 397 125451Google Scholar
[3] Zhang C Y, Ji M, Zhou X L, Mi X H, Chen H, Zhang B B, Fu Z K, Zhang Z L 2023 Adv. Funct. Mater. 33 2208561Google Scholar
[4] Zhuang Y X, Chen D R, Chen W J, Zhang W X, Su X, Deng R R, An Z F 2021 Light-Sci. Appl. 10 132Google Scholar
[5] Xiang Y, Zheng S S, Yuan S S, Wang J, Wu Y H, Zhu X H 2022 Mikrochim. Acta 189 120Google Scholar
[6] Zhang Z J, Han Q Y, Lau J W, Xing B G 2020 ACS Mater. Lett. 2 1516Google Scholar
[7] Chihara T, Umezawa M, Miyata K 2019 Sci. Rep. 9 12806Google Scholar
[8] Jiang T, Qin W P, Zhou J 2014 J. Alloys Compd. 593 79Google Scholar
[9] Venkataramanan Mahalingam, Chanchal Hazra, Rafik Naccache, Fiorenzo Vetroneb 2013 J. Mater. Chem. C 1 6536Google Scholar
[10] 何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强 2013 62 237803Google Scholar
He E J, Zheng H R, Gao W, Lu Y, Li J N, Wei Y, Wang D, Zhu G Q 2013 Acta Phys. Sin 62 237803Google Scholar
[11] Sheng W, Yan L, Tan Y Y, Zhao Y, Huang H Z, Zhou B 2023 Adv. Photonics Res. 4 2300172Google Scholar
[12] Wang Z J, Lin S B, Liu Y J, Hou J, Xu X Y, Zhao X 2022 Nanomaterials 12 3288Google Scholar
[13] Gao W, Sun Z Y, Han Q Y, Han S S, Cheng X T, Wang Y K, Yan X W, Dong J 2021 J. Alloys Compd. 857 157578Google Scholar
[14] Sun Y Z, Bi H F, Wang T, Li Z X, Song H N, Sun F L, Zhou G J 2020 Mater. Sci. Eng. , C 261 114674Google Scholar
[15] Peng Y H, Peng J C, Han J J, Wang T H, Yin Z Y, Qiu J B, Wang Q, Yang Z W 2020 J. Rare Earths 38 577Google Scholar
[16] Gao D L, Zhang X Y, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732Google Scholar
[17] Gao W, Zhang C X, Han Q Y, Lu Y R, Yan X W, Wang Y K, Yang Y, Liu J H, Dong J 2022 J. Lumin. 241 118501Google Scholar
[18] Zhao J Y, Sun Y J, Kong X G, Tian L J, Wang Y, Tu L P, Zhao J L, Zhang H 2008 J. Phys. Chem. B 112 15666Google Scholar
[19] Chen Y S, Zhou J P, Jiao Y C, He W, Wang H H, Hao X L, Lu J X, Yang S E 2013 J. Lumin. 134 504Google Scholar
[20] Zhou Z Q, Xue J B, Zhang B P, Wang C, Yang X C, Fan W, Ying L Y, Zheng Z W 2021 Appl. Phys. Lett. 118 173301Google Scholar
[21] Zhang G, Dong H, Wang D, Sun L D, Yan C H 2017 J. Rare Earths 35 1Google Scholar
[22] 高伟, 董军, 王瑞博, 王朝晋, 郑海荣 2016 65 084205Google Scholar
Gao W, Dong J, Wang R B, Wang Z J, Zheng H R 2016 Acta Phys. Sin. 65 084205Google Scholar
[23] Gao D L, Zhang X Y, He E J 2013 J. Alloys Compd. 554 395Google Scholar
[24] M Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, M. P. Hehlen 2000 Phys. Rev. B 61 3337Google Scholar
[25] Xu F, Luo W, Li A H, Sun Z J 2023 J. Lumin. 253 119487Google Scholar
[26] Shang Y F, Hao S W, Lv W Q, Chen T, Tian L, Lei Z T, Yang C H 2018 J. Mater. Chem. C 6 3869Google Scholar
[27] Lee C, Park H, Kim W 2019 Phys. Chem. Chem. Phys. 21 24026Google Scholar
[28] Lin H, Xu D K, Chen Z Y, Li Y J, Xu L Q, Ma Y, Yang S H 2020 Appl. Surf. Sci. 514 146074Google Scholar
[29] Gao W, Xing Y, Chen B H, Shao L, Zhang J J, Yan X W, Han Q Y, Zhang C Y, Liu L, Dong J 2023 J. Alloys Compd. 936 168371Google Scholar
[30] Gao W, Wang B Y, Han Q Y, Gao L, Wang Z J, Sun Z Y, Zhang B, Dong J 2020 J. Alloys Compd. 818 152934Google Scholar
[31] Luwang M N, Ningthoujam R S, Srivastava S K, Vatsa R K 2011 J. Mater. Chem. 21 5326Google Scholar
[32] Cheng X W, Ge H, Wei Y, Huang L 2018 ACS Nano 12 10992Google Scholar
计量
- 文章访问数: 1577
- PDF下载量: 37
- 被引次数: 0