搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于X射线荧光光谱的温稠密物质离化分布实验方法研究

张志宇 赵阳 青波 张继彦 林成亮 杨国洪 韦敏习 熊刚 吕敏 黄成武 朱托 宋天明 赵妍 张玉雪 张璐 李丽灵 杜华冰 车兴森 黎宇坤 詹夏宇 杨家敏

引用本文:
Citation:

基于X射线荧光光谱的温稠密物质离化分布实验方法研究

张志宇, 赵阳, 青波, 张继彦, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏

Experimental method for warm dense matter ionization distribution based on X-ray fluorescence pectroscopy

Zhang Zhi-Yu, Zhao Yang, Qing Bo, Zhang Ji-Yan, Lin Cheng-Liang, Yang Guo-Hong, Wei Min-Xi, Xiong Gang, Lü Min, Huang Cheng-Wu, Zhu Tuo, Song Tian-Ming, Zhao Yan, Zhang Yu-Xue, Zhang Lu, Li Li-Ling, Du Hua-Bing, Che Xing-Sen, Li Yu-Kun, Zhan Xia-Yu, Yang Jia-Min
PDF
HTML
导出引用
  • 受温度及密度等环境效应影响, 温稠密物质的电子结构发生显著变化, 其理论描述非常复杂, 精密实验测量亦极其困难. 本文发展了基于X射线荧光光谱研究温稠密物质离化分布的实验方法, 结合理论研究有助于深入理解温稠密物质的电子结构变化. 在万焦耳激光装置上, 设计特殊构型黑腔复合加载产生数十eV、近固体密度的稠密Ti物质, 利用激光辐照V产生的热发射线泵浦Ti的荧光, 并采用晶体谱仪诊断样品的X射线荧光光谱. 实验中获得冷样品和加载样品的荧光光谱, 观测到加载样品Kα及Kβ荧光谱线相对于冷样品光谱在高能侧的显著变化, 结合理论计算解释了加载样品荧光谱线的变化主要来源于其温度上升后离化分布的改变, 建立了基于X射线荧光光谱的温稠密物质离化分布实验研究能力.
    Warm dense matter (WDM), a state of matter that lies at the frontier between condensed matter and plasma, is one of the main research objects of high energy density physics (HEDP). Comparing with the isolated atom, the electron structure of WDM will change because of the influence of density and temperature effect. Both the accurate theoretical representation and the accurate experimental study of WDM electron structure are challenging, as it is strongly coupled and partially degenerated. In this work, an experimental method of studying the ionization distribution of WDM based on X-ray fluorescence spectroscopy is developed. In the experiment, in a specially designed hohlraum, warm and dense titanium with several tens of electron volts and nearly solid density is produced by simultaneous driving of high-energy X-ray heating and shock compression. Then, using the characteristic line spectrum emitted by the laser irradiation on pump material (Vanadium) as a pump source, the titanium emits fluorescence. The X-ray fluorescence spectra of titanium with different states (cold sample, 1.8–4.5 g/cm3 and 1–25 eV) are diagnosed by changing the experimental strategy. The experimental results indicate that the line profiles of Kα and Kβ fluorescence spectrum of the heated sample change obviously compared with those of the cold sample. According to the theoretical calculation of the two-step Hartree-Fock-Slater (TSHFS) method, the main reason for the change of the line profile is the change of ionization distribution caused by temperature rising. The future work will focus on optimizing the experimental method of X-ray fluorescence spectrum, such as improving the spectrum resolution, characterizing the temperature and density experimentally, obtaining a set of ionization distribution data, and then studying the influence of dense environment on electronic structure.
      通信作者: 杨家敏, yjm70018@sina.cn
    • 基金项目: 国家自然科学基金(批准号: 12004351, 11734013)资助的课题.
      Corresponding author: Yang Jia-Min, yjm70018@sina.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004351, 11734013).
    [1]

    Saumon D, Chabrier G 1991 Phys. Rev. A 44 5122Google Scholar

    [2]

    Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar

    [3]

    Surh M P, Barbee T W, Yang L H 2001 Phys. Rev. Lett. 86 5958Google Scholar

    [4]

    Mazevet S, Zérah G 2008 Phys. Rev. Lett. 101 155001Google Scholar

    [5]

    金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民 2021 70 073102Google Scholar

    Jin Y, Zhang P, Li Y J, Hou Y, Zeng J L, Yuan J M 2021 Acta Phys. Sin. 70 073102Google Scholar

    [6]

    Zhang S, Zhao S J, Kang W, Zhang P, He X T 2016 Phys. Rev. B 93 115114Google Scholar

    [7]

    Dai J Y, Hou Y, Yuan J M 2010 Phys. Rev. Lett. 104 245001Google Scholar

    [8]

    Wang C, He X T, Zhang P 2011 Phys. Rev. Lett. 106 145002Google Scholar

    [9]

    Bradley D K, Kilkenny J, Rose S J, Hares J D 1987 Phys. Rev. Lett. 59 2995Google Scholar

    [10]

    DaSilva L, Ng A, Godwal B K, Chiu G, Cottet F, Richardson M C, Jaanimagi P A, Lee Y T 1989 Phys. Rev. Lett. 62 1623Google Scholar

    [11]

    Yaakobi B, Boehly T R, Sangster T C, Meyerhofer D D, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Lorenz K T, Hawreliak J A 2008 Phys. Plasmas 15 062703Google Scholar

    [12]

    Benuzzi-Mounaix A, Dorchies F, Recoules V, Festa F, Peyrusse O, Levy A, Ravasio A, Hall T, Koenig M, Amadou N, Brambrink E, Mazevet S 2011 Phys. Rev. Lett. 107 165006Google Scholar

    [13]

    Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K, Zhang B H 2013 Phys. Rev. Lett. 111 155003Google Scholar

    [14]

    Zhao Y, Zhang Z Y, Qing B, Yang J M, Zhang J Y, Wei M X, Yang G H, Song T M, Xiong G, Lü M, Hu Z M, Deng B, Hu X, Zhang W H, Shang W L, Hou L F, Du H B, Zhan X Y, Yu R Z 2017 EPL 117 65001Google Scholar

    [15]

    Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2017 High Energy Density Phys. 24 39Google Scholar

    [16]

    Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2018 Phys. Plasmas 25 056301Google Scholar

    [17]

    Jiang S, Lazicki A E, Hansen S B, Sterne P A, Grabowski P, Shepherd R, Scott H A 2020 Phys. Rev. E 101 023204Google Scholar

    [18]

    Mančić A, Lévy A, Harmand M, Nakatsutsumi M, Antici P, Audebert P, Combis P, Fourmaux S, Mazevet S, Peyrusse O, Recoules V, Renaudin P, Robiche J, Dorchies F, Fuchs J 2010 Phys. Rev. Lett. 104 035002Google Scholar

    [19]

    Park H, Remington B A, Braun D, Celliers P, Collins G W, Eggert J, Giraldez E, Pape S L, Lorenz T, Maddox B, Hamza A, Ho D, Hicks D, Patel P, Pollaine S, Prisbrey S, Smith R, Swift D, Wallace R 2008 J. Phys. Conf. Ser. 112 042024Google Scholar

    [20]

    Lee H J, Neumayer P, Castor J, Döppner T, Falcone R W, Fortmann C, Hammel B A, Kritcher A L, Landen O L, Lee R W, Meyerhofer D D, Munro D H, Redmer R, Regan S P, Weber S, Glenzer S H 2009 Phys. Rev. Lett. 102 115001Google Scholar

    [21]

    Benuzzi-Mounaix A, Mazevet S, Ravasio A, Vinci T, Denoeud A, Koenig M, Amadou N, Brambrink E, Festa F, Levy A, Harmand M, Brygoo S, Huser G, Recoules V, Bouchet J, Morard G, Guyot F, Resseguier T, Myanishi K, Ozaki N, Dorchies F, Gaudin J, Leguay P M, Peyrusse O, Henry O, Raffestin D, Pape S, Smith R, Musella R 2014 Phys. Scr. T161 014060Google Scholar

    [22]

    Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lü M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M 2019 Phys. Plasmas 26 072704Google Scholar

    [23]

    Eidmann K, Andiel U, Pisani F, Hakel P, Mancini R C, Junkel-Vives G C, Abdallah J, Witte K 2003 J. Quant. Spectrosc. Radiat. Transfer 81 133Google Scholar

    [24]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar

    [25]

    Son S K, Thiele R, Jurek Z, Ziaja B, Santra R 2014 Phys. Rev. X 4 031004Google Scholar

    [26]

    Lin C L 2019 Phys. Plasmas 26 122707Google Scholar

  • 图 1  温稠密Ti的荧光光谱实验示意图 (a)荧光光谱测量; (b)样品处辐射源测量

    Fig. 1.  Schematic of the X-ray fluorescence spectrum experiment of warm dense Ti: (a) Measurement of the X-ray fluorescence spectrum; (b) measurement of the radiation source for sample

    图 2  (a)样品处辐射源; (b) Ti样品的温度密度演化过程模拟结果, 绿色区域对应Shot 2的诊断时间窗口

    Fig. 2.  (a) Incident flux for the sample; (b) simulated density and temperature evolution of Ti sample, and the green area corresponds to the diagnostic window for Shot 2

    图 3  不同状态Ti样品的荧光光谱 (a)原始图像; (b) $ {\mathrm{K}}_{\alpha} $解谱结果; (c) $ {\mathrm{K}}_{\beta} $解谱结果

    Fig. 3.  X-ray fluorescence spectrum of Ti samples with different state: (a) Original images; (b) spectral results of $ {\mathrm{K}}_{\alpha} $; (c) spectral results of $ {\mathrm{K}}_{\beta} $

    图 4  冷Ti样品$ {\mathrm{K}}_{\alpha} $计算结果与实验结果的比较

    Fig. 4.  Comparison between simulated results and experimental results of cold Ti sample $ {\mathrm{K}}_{\alpha}$

    图 5  加载Ti样品$ {\mathrm{K}}_\alpha $荧光光谱计算结果与实验结果的对比

    Fig. 5.  Comparison between simulated results and experimental results of warm dense Ti sample $ {\mathrm{K}}_\alpha $

    图 6  Ti样品$ {\mathrm{K}}_{\beta} $计算结果与实验结果的比较, 图中数字代表Ti的价态

    Fig. 6.  Comparison between simulated results and experimental results of Ti sample $ {\mathrm{K}}_{\beta}$, the numbers in the figure represent the valence state of Ti

    表 1  密度为2.25 $ {\mathrm{g/cm}}^3 $、不同温度Ti的离化分布的相应荧光谱线能量

    Table 1.  Ionization distribution and spectrum line energy of Ti with 2.25 $ {\mathrm{g/cm}}^3 $ and different temperature

    温度/eV 价态 组态 组态占比率 $ {\mathrm{K}}_{\alpha1} $能量/eV $ {\mathrm{K}}_{\beta} $能量/eV
    10 4 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23 {\mathrm{p}}^6 $ 0.59 4510.78 4930.90
    5 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23 {\mathrm{p}}^5 $ 0.31 4511.95 4936.91
    5 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13 {\mathrm{p}}^6 $ 0.01 4511.80 4936.99
    6 $ 1 s^22 s^22 p^63 s^23 p^4 $ 0.07 4513.47 4944.08
    20 4 $ 1{\mathrm{ s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23{\mathrm{ p}}^6 $ 0.07 4508.75 4935.17
    5 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23 {\mathrm{p}}^5 $ 0.20 4510.24 4942.15
    5 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13 {\mathrm{p}}^6 $ 0.02 4510.01 4942.00
    6 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23 {\mathrm{p}}^4 $ 0.25 4512.07 4950.23
    6 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13 {\mathrm{p}}^5 $ 0.06 4511.80 4949.96
    7 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23 {\mathrm{p}}^3 $ 0.16 4514.26 4959.43
    7 $ 1 {\mathrm{s}}^22{\mathrm{ s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13 {\mathrm{p}}^4 $ 0.08 4513.95 4959.03
    8 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23{\mathrm{ p}}^2 $ 0.06 4516.83 4969.80
    8 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13 {\mathrm{p}}^3 $ 0.05 4516.47 4969.27
    9 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23{\mathrm{ p}}^1 $ 0.01 4519.78 4981.40
    9 $ 1 {\mathrm{s}}^22{\mathrm{ s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13{\mathrm{ p}}^2 $ 0.02 4519.38 4980.74
    注: 组态占比率小于0.01的组态已忽略
    下载: 导出CSV
    Baidu
  • [1]

    Saumon D, Chabrier G 1991 Phys. Rev. A 44 5122Google Scholar

    [2]

    Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar

    [3]

    Surh M P, Barbee T W, Yang L H 2001 Phys. Rev. Lett. 86 5958Google Scholar

    [4]

    Mazevet S, Zérah G 2008 Phys. Rev. Lett. 101 155001Google Scholar

    [5]

    金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民 2021 70 073102Google Scholar

    Jin Y, Zhang P, Li Y J, Hou Y, Zeng J L, Yuan J M 2021 Acta Phys. Sin. 70 073102Google Scholar

    [6]

    Zhang S, Zhao S J, Kang W, Zhang P, He X T 2016 Phys. Rev. B 93 115114Google Scholar

    [7]

    Dai J Y, Hou Y, Yuan J M 2010 Phys. Rev. Lett. 104 245001Google Scholar

    [8]

    Wang C, He X T, Zhang P 2011 Phys. Rev. Lett. 106 145002Google Scholar

    [9]

    Bradley D K, Kilkenny J, Rose S J, Hares J D 1987 Phys. Rev. Lett. 59 2995Google Scholar

    [10]

    DaSilva L, Ng A, Godwal B K, Chiu G, Cottet F, Richardson M C, Jaanimagi P A, Lee Y T 1989 Phys. Rev. Lett. 62 1623Google Scholar

    [11]

    Yaakobi B, Boehly T R, Sangster T C, Meyerhofer D D, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Lorenz K T, Hawreliak J A 2008 Phys. Plasmas 15 062703Google Scholar

    [12]

    Benuzzi-Mounaix A, Dorchies F, Recoules V, Festa F, Peyrusse O, Levy A, Ravasio A, Hall T, Koenig M, Amadou N, Brambrink E, Mazevet S 2011 Phys. Rev. Lett. 107 165006Google Scholar

    [13]

    Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K, Zhang B H 2013 Phys. Rev. Lett. 111 155003Google Scholar

    [14]

    Zhao Y, Zhang Z Y, Qing B, Yang J M, Zhang J Y, Wei M X, Yang G H, Song T M, Xiong G, Lü M, Hu Z M, Deng B, Hu X, Zhang W H, Shang W L, Hou L F, Du H B, Zhan X Y, Yu R Z 2017 EPL 117 65001Google Scholar

    [15]

    Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2017 High Energy Density Phys. 24 39Google Scholar

    [16]

    Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2018 Phys. Plasmas 25 056301Google Scholar

    [17]

    Jiang S, Lazicki A E, Hansen S B, Sterne P A, Grabowski P, Shepherd R, Scott H A 2020 Phys. Rev. E 101 023204Google Scholar

    [18]

    Mančić A, Lévy A, Harmand M, Nakatsutsumi M, Antici P, Audebert P, Combis P, Fourmaux S, Mazevet S, Peyrusse O, Recoules V, Renaudin P, Robiche J, Dorchies F, Fuchs J 2010 Phys. Rev. Lett. 104 035002Google Scholar

    [19]

    Park H, Remington B A, Braun D, Celliers P, Collins G W, Eggert J, Giraldez E, Pape S L, Lorenz T, Maddox B, Hamza A, Ho D, Hicks D, Patel P, Pollaine S, Prisbrey S, Smith R, Swift D, Wallace R 2008 J. Phys. Conf. Ser. 112 042024Google Scholar

    [20]

    Lee H J, Neumayer P, Castor J, Döppner T, Falcone R W, Fortmann C, Hammel B A, Kritcher A L, Landen O L, Lee R W, Meyerhofer D D, Munro D H, Redmer R, Regan S P, Weber S, Glenzer S H 2009 Phys. Rev. Lett. 102 115001Google Scholar

    [21]

    Benuzzi-Mounaix A, Mazevet S, Ravasio A, Vinci T, Denoeud A, Koenig M, Amadou N, Brambrink E, Festa F, Levy A, Harmand M, Brygoo S, Huser G, Recoules V, Bouchet J, Morard G, Guyot F, Resseguier T, Myanishi K, Ozaki N, Dorchies F, Gaudin J, Leguay P M, Peyrusse O, Henry O, Raffestin D, Pape S, Smith R, Musella R 2014 Phys. Scr. T161 014060Google Scholar

    [22]

    Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lü M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M 2019 Phys. Plasmas 26 072704Google Scholar

    [23]

    Eidmann K, Andiel U, Pisani F, Hakel P, Mancini R C, Junkel-Vives G C, Abdallah J, Witte K 2003 J. Quant. Spectrosc. Radiat. Transfer 81 133Google Scholar

    [24]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar

    [25]

    Son S K, Thiele R, Jurek Z, Ziaja B, Santra R 2014 Phys. Rev. X 4 031004Google Scholar

    [26]

    Lin C L 2019 Phys. Plasmas 26 122707Google Scholar

  • [1] 张志宇, 赵阳, 青波, 张继彦, 马建毅, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质电子结构密度效应研究.  , 2023, 72(24): 245201. doi: 10.7498/aps.72.20231215
    [2] 张志宇, 赵阳, 青波, 张继彦, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质离化分布实验方法研究.  , 2023, 0(0): 0-0. doi: 10.7498/aps.72.20231216
    [3] 邢海英, 郑智健, 张子涵, 吴文静, 郭志英. 应力调控BlueP/X Te2 (X = Mo, W)范德瓦耳斯异质结电子结构及光学性质理论研究.  , 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [4] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率.  , 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [5] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民. 温稠密物质中不同价态离子分布对X-射线弹性散射光谱计算的影响.  , 2021, 70(7): 073102. doi: 10.7498/aps.70.20201483
    [6] 王天浩, 王坤, 张阅, 姜林村. 温稠密铝等离子体物态方程及其电离平衡研究.  , 2020, 69(9): 099101. doi: 10.7498/aps.69.20191826
    [7] 王文杰, 康智林, 宋茜, 王鑫, 邓加军, 丁迅雷, 车剑滔. 层数变化对堆叠生长的MoS2(1-x) Se2x电子结构的影响.  , 2018, 67(24): 240601. doi: 10.7498/aps.67.20181494
    [8] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱.  , 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [9] 马桂存, 张其黎, 宋红州, 李琼, 朱希睿, 孟续军. 温稠密物质物态方程的理论研究.  , 2017, 66(3): 036401. doi: 10.7498/aps.66.036401
    [10] 曹青松, 邓开明. X@C20F20(X=He,Ne,Ar,Kr)几何结构和 电子结构的理论研究.  , 2016, 65(5): 056102. doi: 10.7498/aps.65.056102
    [11] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究.  , 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [12] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究.  , 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [13] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究.  , 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [14] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算.  , 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [15] 汝强, 胡社军, 赵灵智. LixFePO4(x=0.0, 0.75, 1.0)电子结构与弹性性质的第一性原理研究.  , 2011, 60(3): 036301. doi: 10.7498/aps.60.036301
    [16] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算.  , 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [17] 张秀荣, 吴礼清, 饶倩. (OsnN)0,(n=16)团簇电子结构与光谱性质的理论研究.  , 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [18] 章正杰, 孟大维, 吴秀玲, 何开华, 樊孝玉, 刘卫平, 黄利武, 郑建平. 共掺杂金红石TiO2的电子结构和红外光谱研究.  , 2011, 60(3): 037802. doi: 10.7498/aps.60.037802
    [19] 张秀荣, 高从花, 吴礼清, 唐会帅. WnNim(n+m≤7; m=1, 2)团簇电子结构与光谱性质的理论研究.  , 2010, 59(8): 5429-5438. doi: 10.7498/aps.59.5429
    [20] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究.  , 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
计量
  • 文章访问数:  1825
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-26
  • 修回日期:  2023-09-12
  • 上网日期:  2023-11-28
  • 刊出日期:  2024-01-05

/

返回文章
返回
Baidu
map