搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种态制备误差容忍的量子数字签名协议

马洛嘉 丁华建 陈子骐 张春辉 王琴

引用本文:
Citation:

一种态制备误差容忍的量子数字签名协议

马洛嘉, 丁华建, 陈子骐, 张春辉, 王琴

A quantum digital signature protocol with state preparation error tolerance

Ma Luo-Jia, Ding Hua-Jian, Chen Zi-Qi, Zhang Chun-Hui, Wang Qin
PDF
HTML
导出引用
  • 量子数字签名(quantum digital signature, QDS)能够以信息论安全保证签名消息的不可伪造性、不可否认性和可转移性, 近年来备受关注与研究. 其中, 利用正交编码方式提出的信息论安全的实用化QDS协议, 成为目前QDS研究的主流范式. 然而, 现有QDS理论和实验都忽视了态制备过程中由于调制器件的不完美性可能引入调制误差. 本文针对此问题提出态制备误差容忍的QDS协议. 仿真结果表明, 相比原来的QDS协议, 本协议对态制备误差具有较好的容忍度, 能实现更高的签名率和签名距离. 另外, 本协议在密钥产生阶段只需要制备3个量子态, 降低了实验要求和难度. 因此, 本协议将对未来QDS的实际应用提供重要的参考价值.
    The quantum digital signature (QDS) has attracted much attention as it ensures the nonrepudiation, unforgeability, and transferability of signature messages based on information-theoretic security. Amiri et al. (Phys. Rev. A 93 032325) proposed the first practical QDS protocol based on orthogonal coding, which has realized information-theoretic security and become the mainstream paradigm in QDS research. The procedure of QDS involves two essential stages, the one is the distribution stage, in which Alice-Bob and Alice-Charlie individually utilize the three-intensity decoy-state quantum key distribution protocol but without error correction or privacy amplification, namely, key-generation protocol, to generate correlated bit strings, the other is the messaging stage, in which Alice transmits signature messages to the two recipients.However, previous theoretical and experimental studies both overlooked the modulation errors that may be introduced in the state preparation process due to the imperfections in modulator devices. Under the traditional framework of GLLP analysis method, these errors will significantly reduce the actual signature rates. Therefore, we propose a state-preparation-error tolerant QDS and use parameter analysis to characterize the state preparation error to make the simulation analysis more realistic. In addition, we analyze the signature rates of the present scheme by using the three-intensity decoy-state method.Compared with previous QDS protocols, our protocol almost shows no performance degradation under practical state preparation errors and exhibits a maximum transmission distance around 180 km. Furthermore, state preparation errors do not have a significant influence on the bit error rate induced by normal communication between the legitimate users or the one produced by an eavesdropper. These results prove that the method proposed in this paper has excellent robustness against state preparation errors and it can achieve much higher signature rates and signature distances than other standard methods. Besides, signature rates are basically unchanged under different total pulse numbers, which shows that our protocol also has good robustness against the finite-size effect. Additionally, in the key generation process, our method is only required to prepare three quantum states, which will reduce the difficulty of experiment realizations.Furthermore, the proposed method can also be combined with the measurement-device-independent QDS protocol and the twin-field QDS protocol to further increase the security level of QDS protocol. Therefore, our work will provide an important reference value for realizing the practical application of QDS in the future.
      通信作者: 王琴, qinw@njupt.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12074194, 11774180) 、江苏省自然科学基金前沿技术项目(批准号: BK20192001)和江苏省重点研发计划产业前瞻与关键核心技术项目(批准号: BE2022071)资助的课题.
      Corresponding author: Wang Qin, qinw@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074194, 11774180), the Leading-edge Technology Program of Natural Science Foundation, China (Grant No. BK20192001), and the Industrial Prospect and Key Core Technology Projects of Jiangsu Provincial key R & D Program, China(Grant No. BE2022071).
    [1]

    Diffie W, Helman M E 1976 IEEE Trans. Inf. Theory 22 644Google Scholar

    [2]

    Gottesman D, Chuang I 2001 arXiv: quant-ph/0105032v2

    [3]

    Clarke P J, Collins R J, Dunjko V, Andersson E, Jeffers J, Buller G S 2012 Nat. Commun. 3 1174Google Scholar

    [4]

    Collins R J, Donaldson R J, Dunjko V, Wallden P, Clarke P J, Andersson E, Jeffers J, Buller G S 2014 Phys. Rev. Lett. 113 040502Google Scholar

    [5]

    Amiri R, Wallden P, Kent A, Andersson E 2016 Phys. Rev. A 93 032325Google Scholar

    [6]

    Puthoor I V, Amiri R, Wallden P, Curty M, Andersson Erika 2016 Phys. Rev. A 94 022328Google Scholar

    [7]

    An X B, Zhang H, Zhang C M, Chen W, Wang S, Yin Z Q, Wang Q, He D Y, Hao P L, Liu S F, Zhou X Y, Guo G C, Han Z F 2019 Opt. Lett. 44 139Google Scholar

    [8]

    Zhang C H, Zhou X Y, Ding H J, Zhang C M, Guo G C, Wang Q 2018 Phys. Rev. Appl. 10 034033Google Scholar

    [9]

    Ding H J, Chen J J, Li J, Zhou X Y, Zhang C H, Zhang C M, Wang Q 2020 Opt. Lett. 45 1711Google Scholar

    [10]

    Yin H L, Fu Y, Li C L, Weng C X, Li B H, Gu J, Lu Y S, Huang S, Chen Z B 2023 Natl. Sci. Rev. 10 1093

    [11]

    Lo H K, Ma X F, Chen K 2005 Phys. Rev. Lett. 94 230504Google Scholar

    [12]

    Zeng G, Keitel C H 2002 Phys. Rev. A 65 042312Google Scholar

    [13]

    Tamaki K, Lo H K, Fung C H F, Qi B 2011 Phys. Rev. A 85 042307

    [14]

    Koashi M 2009 New J. Phys. 11 045018Google Scholar

    [15]

    Lo H K, Preskill J 2007 Quant. Inf. Comput. 8 431

    [16]

    Gottesman D, Lo H K, Lütkenhaus N, Preskill J 2004 Quant. Inf. Comput. 4 325

    [17]

    Tamaki K, Curty M, Kato G, Lo H K, Azuma K 2014 Phys. Rev. A 90 052314Google Scholar

    [18]

    Serfling R J 1974 Ann. Statist. 2 39

    [19]

    马啸, 孙铭烁, 刘靖阳, 丁华建, 王琴 2022 71 030301Google Scholar

    Ma X, Sun M S, Liu J Y, Ding H J, Wang Q 2022 Acta Phys. Sin. 71 030301Google Scholar

    [20]

    Hoeffding W 1994 Probability Inequalities for Sums of Bounded Random Variables (New York: Springer) pp409–426

    [21]

    Gobby C, Yuan Z L, Shields A J 2004 Appl. Phys. Lett. 84 3672Google Scholar

    [22]

    Zhang C H, Zhou X Y, Zhang C M, Li J, Wang Q 2021 Opt. Lett. 46 3757Google Scholar

  • 图 1  态制备误差容忍方法和GLLP分析方法签名率大小对比结果

    Fig. 1.  Comparison on the signature rate between the state-preparation-error tolerance scheme and GLLP method.

    图 2  态制备误差容忍方法和GLLP分析方法的错误率对比结果

    Fig. 2.  Comparison on the error rate between the state-preparation-error tolerance scheme and GLLP method.

    图 3  传输距离为20 km时, 不同总脉冲数下, 态制备误差容忍方法和GLLP分析方法签名率随着态制备误差变化对比

    Fig. 3.  The signature rate vs. state preparation error for the state-preparation-error tolerance scheme and GLLP method under different total number of pulses. Here the transmission distance is fixed at 20 km.

    表 1  基于量子数字签名的态制备误差容忍协议仿真使用的参数列表[21]

    Table 1.  The parameter list used for simulation of state preparation error tolerance protocol based on quantum digital signature protocol[21].

    接收方探测器
    暗计数率 Pd
    接收方探测器
    探测效率 ηd
    信道损耗系数
    α/(dB·km–1)
    KGP过程中估参
    长度比例 d
    发射的总
    脉冲数Ntot
    失败概率
    ${\varepsilon _{{\text{PE}}}}$
    最弱诱骗态
    强度 w
    1.5×10–6 0.145 0.2 1/21 1014 10–5 0.002
    下载: 导出CSV
    Baidu
  • [1]

    Diffie W, Helman M E 1976 IEEE Trans. Inf. Theory 22 644Google Scholar

    [2]

    Gottesman D, Chuang I 2001 arXiv: quant-ph/0105032v2

    [3]

    Clarke P J, Collins R J, Dunjko V, Andersson E, Jeffers J, Buller G S 2012 Nat. Commun. 3 1174Google Scholar

    [4]

    Collins R J, Donaldson R J, Dunjko V, Wallden P, Clarke P J, Andersson E, Jeffers J, Buller G S 2014 Phys. Rev. Lett. 113 040502Google Scholar

    [5]

    Amiri R, Wallden P, Kent A, Andersson E 2016 Phys. Rev. A 93 032325Google Scholar

    [6]

    Puthoor I V, Amiri R, Wallden P, Curty M, Andersson Erika 2016 Phys. Rev. A 94 022328Google Scholar

    [7]

    An X B, Zhang H, Zhang C M, Chen W, Wang S, Yin Z Q, Wang Q, He D Y, Hao P L, Liu S F, Zhou X Y, Guo G C, Han Z F 2019 Opt. Lett. 44 139Google Scholar

    [8]

    Zhang C H, Zhou X Y, Ding H J, Zhang C M, Guo G C, Wang Q 2018 Phys. Rev. Appl. 10 034033Google Scholar

    [9]

    Ding H J, Chen J J, Li J, Zhou X Y, Zhang C H, Zhang C M, Wang Q 2020 Opt. Lett. 45 1711Google Scholar

    [10]

    Yin H L, Fu Y, Li C L, Weng C X, Li B H, Gu J, Lu Y S, Huang S, Chen Z B 2023 Natl. Sci. Rev. 10 1093

    [11]

    Lo H K, Ma X F, Chen K 2005 Phys. Rev. Lett. 94 230504Google Scholar

    [12]

    Zeng G, Keitel C H 2002 Phys. Rev. A 65 042312Google Scholar

    [13]

    Tamaki K, Lo H K, Fung C H F, Qi B 2011 Phys. Rev. A 85 042307

    [14]

    Koashi M 2009 New J. Phys. 11 045018Google Scholar

    [15]

    Lo H K, Preskill J 2007 Quant. Inf. Comput. 8 431

    [16]

    Gottesman D, Lo H K, Lütkenhaus N, Preskill J 2004 Quant. Inf. Comput. 4 325

    [17]

    Tamaki K, Curty M, Kato G, Lo H K, Azuma K 2014 Phys. Rev. A 90 052314Google Scholar

    [18]

    Serfling R J 1974 Ann. Statist. 2 39

    [19]

    马啸, 孙铭烁, 刘靖阳, 丁华建, 王琴 2022 71 030301Google Scholar

    Ma X, Sun M S, Liu J Y, Ding H J, Wang Q 2022 Acta Phys. Sin. 71 030301Google Scholar

    [20]

    Hoeffding W 1994 Probability Inequalities for Sums of Bounded Random Variables (New York: Springer) pp409–426

    [21]

    Gobby C, Yuan Z L, Shields A J 2004 Appl. Phys. Lett. 84 3672Google Scholar

    [22]

    Zhang C H, Zhou X Y, Zhang C M, Li J, Wang Q 2021 Opt. Lett. 46 3757Google Scholar

  • [1] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案.  , 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [2] 詹绍康, 王金东, 董双, 黄偲颖, 侯倾城, 莫乃达, 弥赏, 向黎冰, 赵天明, 於亚飞, 魏正军, 张智明. 基于四态协议的半量子密钥分发诱骗态模型的有限码长分析.  , 2023, 72(22): 220303. doi: 10.7498/aps.72.20230849
    [3] 周阳, 马啸, 周星宇, 张春辉, 王琴. 实用化态制备误差容忍参考系无关量子密钥分发协议.  , 2023, 72(24): 240301. doi: 10.7498/aps.72.20231144
    [4] 马啸, 孙铭烁, 刘靖阳, 丁华建, 王琴. 一种基于标记单光子源的态制备误差容忍量子密钥分发协议.  , 2022, 71(3): 030301. doi: 10.7498/aps.71.20211456
    [5] 赵健, 陈昭昀, 庄希宁, 薛程, 吴玉椿, 郭国平. 量子态制备及其在量子机器学习中的前景.  , 2021, 70(14): 140307. doi: 10.7498/aps.70.20210958
    [6] 张维, 韩正甫. 一个基于三粒子部分纠缠态的量子广播多重盲签名协议.  , 2019, 68(7): 070301. doi: 10.7498/aps.68.20182044
    [7] 郑盟锟, 尤力. 能够突破标准量子极限的原子双数态的制备研究.  , 2018, 67(16): 160303. doi: 10.7498/aps.67.20181029
    [8] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备.  , 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [9] 聂敏, 王允, 杨光, 张美玲, 裴昌幸. 降雨背景下诱骗态协议最优平均光子数的变色龙自适应策略.  , 2016, 65(2): 020303. doi: 10.7498/aps.65.020303
    [10] 孙伟, 尹华磊, 孙祥祥, 陈腾云. 基于相干叠加态的非正交编码诱骗态量子密钥分发.  , 2016, 65(8): 080301. doi: 10.7498/aps.65.080301
    [11] 孙颖, 赵尚弘, 东晨. 基于量子存储的长距离测量设备无关量子密钥分配研究.  , 2015, 64(14): 140304. doi: 10.7498/aps.64.140304
    [12] 东晨, 赵尚弘, 赵卫虎, 石 磊, 赵顾颢. 非对称信道传输效率的测量设备无关量子密钥分配研究.  , 2014, 63(3): 030302. doi: 10.7498/aps.63.030302
    [13] 周媛媛, 张合庆, 周学军, 田培根. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析.  , 2013, 62(20): 200302. doi: 10.7498/aps.62.200302
    [14] 周媛媛, 周学军. 基于弱相干态光源的非正交编码被动诱骗态量子密钥分配.  , 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [15] 陶 原, 潘 炜, 罗 斌. 一种低经典通信消耗的量子远程态制备方案.  , 2008, 57(4): 2016-2020. doi: 10.7498/aps.57.2016
    [16] 张 淼, 贾焕玉, 姬晓辉, 司 坤, 韦联福. 制备囚禁冷离子的振动压缩量子态.  , 2008, 57(12): 7650-7657. doi: 10.7498/aps.57.7650
    [17] 权东晓, 裴昌幸, 朱畅华, 刘 丹. 一种新的预报单光子源诱骗态量子密钥分发方案.  , 2008, 57(9): 5600-5604. doi: 10.7498/aps.57.5600
    [18] 薛飞, 杜江峰, 范扬眉, 石名俊, 周先意, 韩荣典, 吴季辉. 制备三量子位和四量子位核磁共振等效纯态.  , 2002, 51(4): 763-770. doi: 10.7498/aps.51.763
    [19] 方细明, 朱熙文, 冯 芒, 高克林, 施 磊. 核磁共振量子计算中的赝纯态制备.  , 1999, 48(8): 1405-1411. doi: 10.7498/aps.48.1405
    [20] 周为, 薛秋寒, 郭光灿. 基于量子测量的Fock态制备和自相位调制的影响.  , 1996, 45(8): 1297-1303. doi: 10.7498/aps.45.1297
计量
  • 文章访问数:  2304
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-24
  • 修回日期:  2023-10-09
  • 上网日期:  2023-10-20
  • 刊出日期:  2024-01-20

/

返回文章
返回
Baidu
map