搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高阶SF-SFDTD方法在含时薛定谔方程求解中的应用研究

谢国大 潘攀 任信钢 冯乃星 方明 李迎松 黄志祥

引用本文:
Citation:

高阶SF-SFDTD方法在含时薛定谔方程求解中的应用研究

谢国大, 潘攀, 任信钢, 冯乃星, 方明, 李迎松, 黄志祥

Application of high-order SF-SFDTD scheme to solving a time-dependent Schrödinger equation

Xie Guo-Da, Pan Pan, Ren Xin-Gang, Feng Nai-Xing, Fang Ming, Li Ying-Song, Huang Zhi-Xiang
PDF
HTML
导出引用
  • 时域有限差分方法(finite-difference time-domain, FDTD(2, 2))被广泛用于量子力学中薛定谔方程的求解, 然而受Courant-Friedrichs-Lewy (CFL)条件的影响, 计算空间中的网格尺寸会限制时间步长的取值范围, 极大降低了FDTD(2, 2)方法的数值计算效率. 另外, FDTD(2, 2)方法在时间域和空间域只具有二阶数值精度, 在计算中往往会导致较大的误差累计, 影响仿真结果的正确性. 为了克服这些问题, 结合空间滤波方法(spatial filtering, SF)和高阶辛时域有限差分 (symplectic finite-difference time-domain, SFDTD(3, 4))方法(3和4分别表示时间和空间数值精度), 提出了一种时间稳定性条件可扩展的SF-SFDTD(3, 4)方法用于求解含时薛定谔方程. SF-SFDTD(3, 4)方法无需对传统SFDTD(3, 4)方法的迭代公式进行进一步的推导, 只需要在每一次的数值迭代过程中加入空间滤波操作, 滤除因采用不满足CFL条件的时间步长而产生的不稳定空间域高频分量, 保证数值方法的稳定性, 因此所提方法与传统SFDTD(3, 4)方法具有较高的兼容性. 同时, 理论分析了SF-SFDTD(3, 4)方法的数值色散误差. 最后, 通过数值算例验证了本文所提方法的正确性和有效性.
    The traditional finite-difference time-domain (FDTD (2, 2)) method with second-order numerical accuracy in time and space has been extensively employed in the field of quantum mechanics to solve the Schrödinger equation. Nevertheless, the presence of the Courant-Friedrichs-Lewy (CFL) condition imposes limitations on the grid size in the computational space, thereby constraining the admissible range of time steps. Accordingly, the efficiency of the FDTD(2, 2) method significantly decreases. In addition, the second-order numerical accuracy of the FDTD(2, 2) method both in time domain and in space domain often results in significant error accumulation during calculations, thereby undermining the fidelity of the simulation results. To surmount the constraints imposed by the CFL stability conditions and enhance the accuracy of computations, a novel approach termed SF-SFDTD(3, 4) method has been proposed, with 3 and 4 referring to the accuracy in space and time, respectively. This method combines spatial filtering (SF) with the high-order symplectic finite-difference time-domain (SFDTD) method. Its primary objective is to solve the time-dependent Schrödinger equation while ensuring time stability and scalability. The SF-SFDTD(3, 4) method obviates the need for further deriving the iterative formula employed in the conventional SFDTD(3, 4) method. Therefore, the method under consideration exhibits a remarkable degree of compatibility with its traditional counterpart. It is merely necessary to include a spatial filtering operation during each numerical iteration to eliminate spatial high-frequency components arising from the utilization of time step sizes that fail to satisfy the CFL stability condition, thereby ensuring the stability of the numerical scheme. Moreover, when the time step value satisfies the CFL stability condition, the amplitude of the high-frequency component approaches zero, thereby exerting a minimal influence on the accuracy of the computational results. The adoption of time steps that do not meet the CFL stability conditions leads to an amplification in the amplitude of the high-frequency component. However, this finding solely affects the stability of the computational results, and the elimination of these unstable high-frequency components scarcely affect the accuracy of the computational results. The SF-SFDTD(3, 4) retains the simplicity and efficacy inherent in the traditional SFDTD(3, 4) methods, while enhancing computational efficiency. Additionally, the numerical stability and dispersion error of the SF-SFDTD(3, 4) method are analyzed theoretically. Finally, the validity and efficacy of the proposed method are corroborated through numerical illustrations.
      通信作者: 黄志祥, zxhuang@ahu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62201003, 2022YFA1404003, 62101002, U20A20164, 61901001)资助的课题.
      Corresponding author: Huang Zhi-Xiang, zxhuang@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62201003, 2022YFA1404003, 62101002, U20A20164, 61901001).
    [1]

    Jin J M 2010 Theory and Computational of Electromagnetic Fields (Hoboken, NJ, USA: Wiley

    [2]

    Harrington R F 1968 Field Computation by Moment Methods (New York: Macmillan

    [3]

    Feng B, Chen J, Chung K L, Wang L, Li Y 2022 IEEE Trans. Antennas Propag. 70 3058Google Scholar

    [4]

    Manoufali M, Mobashsher A T, Mohammed B, et al. 2020 IEEE Trans. Biomed. Circuits Sys. 14 452Google Scholar

    [5]

    Schwierz F 2010 Nat. Nanotechnol. 5 487Google Scholar

    [6]

    Russer P, Fichtner N, Lugli P, Porod W, Russer J A, Yordanov H 2010 IEEE Microwave Mag. 11 58Google Scholar

    [7]

    Datta S 2005 Quantum Transport: Atom to Transistor (New York: Cambridge University Press

    [8]

    Joe Y S, Satanin A M, Kim C S 2006 Phys. Scr. 74 259Google Scholar

    [9]

    Griffiths D J 2004 Introduction to Quantum Mechanics (2nd Ed.) (Boston: Addison-Wesley

    [10]

    Soriano A, Navarro E A, Portì J A, Such V 2004 J. Appl. Phys 95 8011Google Scholar

    [11]

    Sullivan D M, Citrin D S 2005 J. Appl. Phys. 97 104305Google Scholar

    [12]

    Zhu M, Wang Y 2020 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), Fuzhou, China, October 11–14, 2020 p1

    [13]

    Decleer P, Van Londersele A, Rogier H, Vande Ginste D 2021 J. Comput. Appl. Math. 381 113023Google Scholar

    [14]

    沈晶, 沙威, 黄志祥, 陈明生, 吴先良 2012 61 190202Google Scholar

    Shen J, Sha Wei E I, Huang Z X, Chen M S, Wu X L 2012 Acta Phys. Sin. 61 190202Google Scholar

    [15]

    Taflove A, Hagness S C 2005 Computational Electrodynamics: the Finite-Difference Time-Domain Method (3rd Ed.) (Boston: Artech House

    [16]

    Sarris C D 2011 IEEE Microwave Wireless Compon. Lett. 21 176Google Scholar

    [17]

    Chang C, Sarris C D 2013 IEEE Trans. Microwave Theory Tech. 61 351Google Scholar

    [18]

    Gao Y J, Zhang J H, Yao Z X 2019 J. Comput. Phys. 397 108853Google Scholar

    [19]

    Decleer P 2018 M. S. Thesis (Ghent: Ghent University

    [20]

    Cao Q, Chen Y, Mittra R 2002 IEEE Trans. Microwave Theory Tech. 50 1578Google Scholar

  • 图 1  kmax$\varDelta $ = 0.1π时, Q(θ, $\varphi $)随θ, $\varphi $的变化

    Fig. 1.  Variation of Q(θ, $\varphi $) with θ, $\varphi $ at kmax$\varDelta $ = 0.1π.

    图 2  扩展因子CE随kmax$\varDelta $的变化

    Fig. 2.  Value of CE varying with kmax$\varDelta $.

    图 3  不同CE的值所确定的滤波半径

    Fig. 3.  Filter radius determined by different values of CE.

    图 4  FDTD(2, 2), SFDTD(3, 4)和SF-SFDTD(3, 4)方法的数值色散误差 (a) FDTD(2, 2)(CE = 1); (b) SFDTD(3, 4)(CE = 1); (c) SF-SFDTD(3, 4)(CE = 5); (d) SF-SFDTD(3, 4)(CE = 10)

    Fig. 4.  Curves of numerical dispersion error for the FDTD(2, 2), SFDTD(3, 4) and SF-SFDTD(3, 4) method: (a) FDTD(2, 2)(CE = 1); (b) SFDTD(3, 4)(CE = 1); (c) SF-SFDTD(3, 4)(CE = 5); (d) SF-SFDTD(3, 4)(CE = 10).

    图 5  二维薛定谔方程的特征频率

    Fig. 5.  Eigenfrequencies of the two-dimensional Schrödinger equation.

    图 6  二维薛定谔方程在不同时间步长下的本征态(ψ2, 2) (a) CE = 1; (b) CE = 2; (c) CE = 4; (d) CE = 5

    Fig. 6.  Eigenstates of two-dimensional Schrödinger equation at different time steps (ψ2, 2): (a) CE = 1; (b) CE = 2; (c) CE = 4; (d) CE = 5.

    图 7  三维薛定谔方程的特征频率

    Fig. 7.  Eigenfrequencies of the three-dimensional Schrödinger equation.

    图 8  三维薛定谔方程在不同时间步下的本征态(ψ2, 2, 2) (a) CE = 1; (b) CE = 2; (c) CE = 4; (d) CE = 6

    Fig. 8.  Eigenstates of three -dimensional Schrödinger equation at different time steps (ψ2, 2, 2): (a) CE = 1; (b) CE = 2; (c) CE = 4; (d) CE = 6.

    图 9  FDTD(2, 2), SFDTD(3, 4)和SF-SFDTD(3, 4)方法计算所得前四个特征频率点的相对计算误差

    Fig. 9.  Relative calculation errors of the first four characteristic frequency points were calculated by FDTD(2, 2), SFDTD(3, 4) and SF-SFDTD(3, 4) methods.

    表 1  SFDTD(3, 4)和SF-SFDTD(3, 4)方法数值求解二维薛定谔方程的运行时间

    Table 1.  Execution time(s) for SFDTD(3, 4) and SF-SFDTD(3, 4) methods for solving two-dimensional Schrödinger equation.

    计算方法CE迭代步数运行时间/s
    SFDTD(3, 4)1400007.78
    SF-SFDTD(3, 4)22000016.18
    SF-SFDTD(3, 4)4100007.98
    SF-SFDTD(3, 4)580004.51
    下载: 导出CSV

    表 2  SFDTD(3, 4)和SF-SFDTD(3, 4)方法数值求解三维薛定谔方程的运行时间的运行时间

    Table 2.  Execution time(s) for SFDTD(3, 4) and SF-SFDTD(3, 4) methods for solving three-dimensional Schrödinger equation.

    计算方法CE迭代次数运行时间/s
    SFDTD(3, 4)130000117.37
    SF-SFDTD(3, 4)215000231.15
    SF-SFDTD(3, 4)47500121.20
    SF-SFDTD(3, 4)6500079.40
    下载: 导出CSV
    Baidu
  • [1]

    Jin J M 2010 Theory and Computational of Electromagnetic Fields (Hoboken, NJ, USA: Wiley

    [2]

    Harrington R F 1968 Field Computation by Moment Methods (New York: Macmillan

    [3]

    Feng B, Chen J, Chung K L, Wang L, Li Y 2022 IEEE Trans. Antennas Propag. 70 3058Google Scholar

    [4]

    Manoufali M, Mobashsher A T, Mohammed B, et al. 2020 IEEE Trans. Biomed. Circuits Sys. 14 452Google Scholar

    [5]

    Schwierz F 2010 Nat. Nanotechnol. 5 487Google Scholar

    [6]

    Russer P, Fichtner N, Lugli P, Porod W, Russer J A, Yordanov H 2010 IEEE Microwave Mag. 11 58Google Scholar

    [7]

    Datta S 2005 Quantum Transport: Atom to Transistor (New York: Cambridge University Press

    [8]

    Joe Y S, Satanin A M, Kim C S 2006 Phys. Scr. 74 259Google Scholar

    [9]

    Griffiths D J 2004 Introduction to Quantum Mechanics (2nd Ed.) (Boston: Addison-Wesley

    [10]

    Soriano A, Navarro E A, Portì J A, Such V 2004 J. Appl. Phys 95 8011Google Scholar

    [11]

    Sullivan D M, Citrin D S 2005 J. Appl. Phys. 97 104305Google Scholar

    [12]

    Zhu M, Wang Y 2020 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), Fuzhou, China, October 11–14, 2020 p1

    [13]

    Decleer P, Van Londersele A, Rogier H, Vande Ginste D 2021 J. Comput. Appl. Math. 381 113023Google Scholar

    [14]

    沈晶, 沙威, 黄志祥, 陈明生, 吴先良 2012 61 190202Google Scholar

    Shen J, Sha Wei E I, Huang Z X, Chen M S, Wu X L 2012 Acta Phys. Sin. 61 190202Google Scholar

    [15]

    Taflove A, Hagness S C 2005 Computational Electrodynamics: the Finite-Difference Time-Domain Method (3rd Ed.) (Boston: Artech House

    [16]

    Sarris C D 2011 IEEE Microwave Wireless Compon. Lett. 21 176Google Scholar

    [17]

    Chang C, Sarris C D 2013 IEEE Trans. Microwave Theory Tech. 61 351Google Scholar

    [18]

    Gao Y J, Zhang J H, Yao Z X 2019 J. Comput. Phys. 397 108853Google Scholar

    [19]

    Decleer P 2018 M. S. Thesis (Ghent: Ghent University

    [20]

    Cao Q, Chen Y, Mittra R 2002 IEEE Trans. Microwave Theory Tech. 50 1578Google Scholar

  • [1] 何欣波, 魏兵. 基于悬挂变量的显式无条件稳定时域有限差分亚网格算法.  , 2024, 73(8): 080202. doi: 10.7498/aps.73.20231813
    [2] 王飞, 魏兵, 李林茜. 色散介质电磁特性时域有限差分分析的Newmark方法.  , 2014, 63(10): 104101. doi: 10.7498/aps.63.104101
    [3] 王飞, 魏兵. 任意磁化方向铁氧体电磁散射时域有限差分分析的Z变换方法.  , 2013, 62(8): 084106. doi: 10.7498/aps.62.084106
    [4] 颛孙旭, 马西奎. 一种适用于任意阶空间差分时域有限差分方法的色散介质通用吸收边界条件算法.  , 2012, 61(11): 110206. doi: 10.7498/aps.61.110206
    [5] 沈晶, 沙威, 黄志祥, 陈明生, 吴先良. 含时Schrdinger方程的高阶辛FDTD算法研究.  , 2012, 61(19): 190202. doi: 10.7498/aps.61.190202
    [6] 刘晓静, 张佰军, 李海波, 刘兵, 张春丽, 郭义庆, 张丙新. 应用量子理论方法研究中子双缝衍射.  , 2010, 59(6): 4117-4122. doi: 10.7498/aps.59.4117
    [7] 姜彦南, 葛德彪. 层状介质时域有限差分方法斜入射平面波引入新方式.  , 2008, 57(10): 6283-6289. doi: 10.7498/aps.57.6283
    [8] 杨利霞, 葛德彪, 赵跃华, 王 刚, 阎 述. 基于直接离散方式的磁化铁氧体材料电磁散射的时域有限差分方法分析.  , 2008, 57(5): 2936-2940. doi: 10.7498/aps.57.2936
    [9] 魏 兵, 葛德彪, 王 飞. 一种处理色散介质问题的通用时域有限差分方法.  , 2008, 57(10): 6290-6297. doi: 10.7498/aps.57.6290
    [10] 刘 奎, 丁宏林, 张贤高, 余林蔚, 黄信凡, 陈坤基. 量子点浮置栅量子线沟道三栅结构单电子场效应管存储特性的数值模拟.  , 2008, 57(11): 7052-7056. doi: 10.7498/aps.57.7052
    [11] 杨利霞, 葛德彪, 魏 兵. 电各向异性色散介质电磁散射的三维递推卷积-时域有限差分方法分析.  , 2007, 56(8): 4509-4514. doi: 10.7498/aps.56.4509
    [12] 杨光杰, 孔凡敏, 李 康, 梅良模. 金属介质在时域有限差分中的几种处理方法.  , 2007, 56(7): 4252-4255. doi: 10.7498/aps.56.4252
    [13] 杨利霞, 葛德彪, 王 刚, 阎 述. 磁化铁氧体材料电磁散射递推卷积-时域有限差分方法分析.  , 2007, 56(12): 6937-6944. doi: 10.7498/aps.56.6937
    [14] 厉江帆, 单树民, 杨建坤, 姜宗福. 失谐量子频率转换系统薛定谔方程的显式解析解.  , 2007, 56(10): 5597-5601. doi: 10.7498/aps.56.5597
    [15] 杨利霞, 葛德彪. 磁各向异性色散介质散射的Padé时域有限差分方法分析.  , 2006, 55(4): 1751-1758. doi: 10.7498/aps.55.1751
    [16] 辛国锋, 陈国鹰, 花吉珍, 赵润, 康志龙, 冯荣珠, 安振峰. 941nm大功率应变单量子阱激光器的波长设计.  , 2004, 53(5): 1293-1298. doi: 10.7498/aps.53.1293
    [17] 张解放, 徐昌智, 何宝钢. 变量分离法与变系数非线性薛定谔方程的求解探索.  , 2004, 53(11): 3652-3656. doi: 10.7498/aps.53.3652
    [18] 王 刚, 温激鸿, 韩小云, 赵宏刚. 二维声子晶体带隙计算中的时域有限差分方法.  , 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
    [19] 李培咸, 郝 跃, 范 隆, 张进城, 张金凤, 张晓菊. 基于量子微扰的AlGaN/GaN异质结波函数半解析求解.  , 2003, 52(12): 2985-2988. doi: 10.7498/aps.52.2985
    [20] 刘剑波, 蔡喜平. 一维定态薛定谔方程的宏观模拟解法.  , 2001, 50(5): 820-824. doi: 10.7498/aps.50.820
计量
  • 文章访问数:  2305
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-12
  • 修回日期:  2023-10-15
  • 上网日期:  2023-11-09
  • 刊出日期:  2024-02-05

/

返回文章
返回
Baidu
map