-
微纳波长分束器是光子芯片中一种重要的分光器件. 本文运用序列二次规划智能算法, 设计了尺寸为1.5 μm × 1.5 μm的多个超小波长分束器, 其中Y型双通道分束器可同时实现TE/TM模式的双波长分束, TE模1140和1200 nm两波长的传输效率分别为80%和81%, 消光比分别为18.1和16.3 dB, TM模传输效率分别为70%和67%, 消光比为18.3和15.9 dB; T型分束器实现了光束的180°相向分离, 待分波长1100和1170 nm的传输效率均达到了88%, 消光比分别为16.6和15.0 dB, 是目前尺寸最小的片上波分器; 十字型三通道分束器实现了波长间隔为50 nm的分束, 待分波长1100, 1150和1200 nm传输效率分别为73%, 66%和70%, 消光比分别为17.2, 13.8和13.8 dB; 非对称三通道分束器分束波长间隔仅为20 nm, 待分波长1200, 1220和1240 nm的传输效率分别为61%, 56%和57%, 消光比分别为10.8, 7.9和8.9 dB. 本方法的设计周期短、设计效率高, 且所设计的结构简单、易加工, 本方法适用于多种片上集成元器件的设计, 为微纳片上集成光子器件的设计提供了一种新思路.Micro-nano wavelength beam splitter is an important beam-splitting device in photonic chips. In this study, the sequence quadratic program is used to design ultra-compact wavelength beam splitters with footprints of 1.5 μm × 1.5 μm. The Y-type dual channel beam splitter can realize TE/TM mode splitting at the same time, the transmissions of TE mode light at 1140 nm and 1200 nm are 80% and 81%, and the extinction ratios are 18.1 dB and 16.3 dB, respectively. The transmissions of TM mode light are 70% and 67%, and the extinction ratios are 18.3 dB and 15.9 dB, respectively. The T-type beam splitter realizes 180° separation angle splitting, and the transmissions of optical power at the wavelengths of 1100 nm and 1170 nm both reach 88%, and the extinction ratios are 16.6 dB and 15.0 dB, respectively. It is the smallest size chip-integrated wavelength beam splitter. The cross-type three-channel beam splitter realizes splitting with a wavelength interval of 50 nm. The transmissions at the wavelengths of 1100, 1150 and 1200 nm are 73%, 66% and 70%, and the extinction ratios are 17.2, 13.8 and 13.8 dB, respectively. The asymmetric three-channel beam splitter realizes splitting with the wavelength interval of 20 nm. The transmissions at the wavelengths of 1200, 1220 and 1240 nm are 61%, 56% and 57%, and the extinction ratios are 10.8, 7.9 and 8.9 dB, respectively. This method has the advantages of a short design period, high design efficiency, simple structure, easy processing, and suitability for designing chip-integrated photonic components. It is expected that it can provide a new idea for designing chip-integrated photonic devices.
-
Keywords:
- sequence quadratic program /
- intelligent design /
- on-chip integration /
- wavelength beam splitter
[1] Yang Y, Huang H Y, Guo C S 2020 Opt. Express 28 14762Google Scholar
[2] Mehrabi K, Zarifkar A, Miri M 2021 Opt. Commun. 479 126474Google Scholar
[3] Tanomura R, Tanemura T, Nakano Y 2023 Jpn. J. Appl. Phys. 62 SC1029Google Scholar
[4] Li D D, Tang Y L, Zhao Y K, Zhou L, Zhao Y, Tang S B 2022 Photonics 9 527Google Scholar
[5] Ammari M, Benmerkhi A, Bouchemat M 2022 Opt. Appl. 52 613Google Scholar
[6] 柯航, 李培丽, 施伟华 2022 71 144204Google Scholar
Ke H, Li P L, Shi W H 2022 Acta Phys. Sin. 71 144204Google Scholar
[7] Faghani A A, Rafiee Z, Amanzadeh H, Yaghoubi E, Yaghoubi E 2022 Optik 257 168824Google Scholar
[8] Butt M A, Shahbaz M, Kozlowski L, Kazmierczak A, Piramidowicz R 2023 Photonics 10 208Google Scholar
[9] Melati D, Xu D X, Cheriton R, Wang S R, Vachon M, Schmid J H, Cheben P, Janz S 2022 Opt. Express 30 14202Google Scholar
[10] Butt M A, Kazanskiy N L, Khonina S N 2023 Plasmonics 18 635Google Scholar
[11] 汪静丽, 陈子玉, 陈鹤鸣 2021 70 014202Google Scholar
Wang J L, Chen Z Y, Chen H M 2021 Acta Phys. Sin. 70 014202Google Scholar
[12] Andonegui I, Calvo I, Garcia-Adeva A J 2014 Appl. Phys. A 115 433Google Scholar
[13] 张佳, 徐旭明, 何灵娟, 于天宝, 郭浩 2012 61 054213Google Scholar
Zhang J, Xu X M, He L J, Yu T B, Guo H 2012 Acta Phys. Sin. 61 054213Google Scholar
[14] Shen B, Wang P, Polson R, Menon R 2015 Nat. Photonics 9 378Google Scholar
[15] Huang J, Yang J B, Chen D B, Bai W, Han J M, Zhang Z J, Zhang J J, He X, Han Y X, Liang L M 2020 Nanophotonics 9 159Google Scholar
[16] Wang K Y, Ren X S, Chang W J, Lu L H, Liu D M, Zhang M M 2020 Photonics Res. 8 528Google Scholar
[17] Liu Z H, Liu X H, Xiao Z Y, Lu C C, Wang H Q, Wu Y, Hu X Y, Liu Y C, Zhang H Y, Zhang X D 2019 Optica 6 1367Google Scholar
[18] Huang H, Xu H Q, Wang H Q, Feng Y, Zhang H, Li J X 2022 Opt. Eng. 61 015105Google Scholar
[19] 黄辉, 胡晨岩, 田梓聪, 缪秋霞, 王慧琴 2021 70 234102Google Scholar
Huang H, Hu C Y, Tian Z C, Miu Q X, Wang H Q 2021 Acta Phys. Sin. 70 234102Google Scholar
[20] Lu J, Vuckovic J 2012 Opt. Express 20 7221Google Scholar
[21] Qi H X, Du Z C, Hu X Y, Yang J Y, Chu S S, Gong Q H 2022 Opto. Electron. 5 210061Google Scholar
[22] Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vuckovic J 2015 Nat. Photonics 9 374Google Scholar
[23] Ma L F, Li J, Liu Z H, Zhang Y X, Zhang N N, Zheng S Q, Lu C C 2021 Chin. Opt. Lett. 19 011301Google Scholar
[24] Su L, Piggott A Y, Sapra N V, Petykiewicz J, Vuckovic J 2018 ACS Photonics 5 301Google Scholar
[25] Han J M, Huang J, Wu J G, Yang J B 2020 Opt. Commun. 465 125606Google Scholar
[26] Yilmaz Y A, Alpkilic A M, Yeltik A, Kurt H 2020 Opt. Commun. 454 124522Google Scholar
[27] Yuan H, Huang J, Wang Z H, Zhang J P, Deng Y, Lin G L, Wu J G, Yang J B 2021 Results Phys. 27 104489Google Scholar
[28] Rojas-Labanda S, Stolpe M 2016 Struct. Multidiscipl. Optim. 53 1315Google Scholar
[29] Gu Q, Barbato M, Conte J P, Gill P E, McKenna F 2012 J. Struct. Eng. 138 822Google Scholar
[30] Izmailov A F, Solodov M V 2011 Math. Program 126 231Google Scholar
[31] Azizi D, Gholami A 2013 IEEE Electr. Insul. M. 29 69Google Scholar
[32] Wang F L, Xu X, Zhang C, Sun C L, Zhao J 2022 IEEE Photonics J. 14 6621606Google Scholar
[33] Yuan M W, Yang G, Song S J, Zhou L P, Minasian R, Yi X K 2022 Opt. Express 30 26201Google Scholar
-
图 2 Y型双通道波分器 (a) 结构图; (b) TE模1140 nm的光场分布; (c) TE模1200 nm的光场分布; (d) TE模传输效率图; (e) TE模的消光比图; (f) TM模1140 nm的光场分布; (g) TM模1200 nm的光场分布; (h) TM模传输效率图; (i) TM模消光比图
Fig. 2. Y-type dual-channel wavelength beam splitter: (a) Structure; (b) optical field distribution at 1140 nm in TE mode; (c) optical field distribution at 1200 nm in TE mode; (d) transmission efficiency in TE mode; (e) extinction ratio in TE mode; (f) optical field distribution at 1140 nm in TM mode; (g) optical field distribution at 1200 nm in TM mode; (h) transmission efficiency in TM mode; (i) extinction ratio in TM mode.
图 5 十字型三通道波分器 (a) 结构图; (b) 1100 nm的光场分布; (c) 1150 nm的光场分布; (d) 1200 nm的光场分布; (e) 传输效率图; (f) 消光比
Fig. 5. Cross-type three-channel wavelength beam splitter: (a) Structure; (b) optical field distribution at 1100 nm; (c) optical field distribution at 1150 nm; (d) optical field distribution at 1200 nm; (e) transmission efficiency; (f) extinction ratio.
图 6 不对称型结构三通道波分器 (a) 结构图; (b) 1200 nm的光场分布; (c) 1220 nm的光场分布; (d) 1240 nm的光场分布; (e) 传输效率图; (f) 消光比图
Fig. 6. Asymmetric structure three-channel wave splitter: (a) Structure; (b) optical field distribution at 1200 nm; (c) optical field distribution at 1220 nm; (d) optical field distribution at 1240 nm; (e) transmission efficiency; (f) extinction ratio.
-
[1] Yang Y, Huang H Y, Guo C S 2020 Opt. Express 28 14762Google Scholar
[2] Mehrabi K, Zarifkar A, Miri M 2021 Opt. Commun. 479 126474Google Scholar
[3] Tanomura R, Tanemura T, Nakano Y 2023 Jpn. J. Appl. Phys. 62 SC1029Google Scholar
[4] Li D D, Tang Y L, Zhao Y K, Zhou L, Zhao Y, Tang S B 2022 Photonics 9 527Google Scholar
[5] Ammari M, Benmerkhi A, Bouchemat M 2022 Opt. Appl. 52 613Google Scholar
[6] 柯航, 李培丽, 施伟华 2022 71 144204Google Scholar
Ke H, Li P L, Shi W H 2022 Acta Phys. Sin. 71 144204Google Scholar
[7] Faghani A A, Rafiee Z, Amanzadeh H, Yaghoubi E, Yaghoubi E 2022 Optik 257 168824Google Scholar
[8] Butt M A, Shahbaz M, Kozlowski L, Kazmierczak A, Piramidowicz R 2023 Photonics 10 208Google Scholar
[9] Melati D, Xu D X, Cheriton R, Wang S R, Vachon M, Schmid J H, Cheben P, Janz S 2022 Opt. Express 30 14202Google Scholar
[10] Butt M A, Kazanskiy N L, Khonina S N 2023 Plasmonics 18 635Google Scholar
[11] 汪静丽, 陈子玉, 陈鹤鸣 2021 70 014202Google Scholar
Wang J L, Chen Z Y, Chen H M 2021 Acta Phys. Sin. 70 014202Google Scholar
[12] Andonegui I, Calvo I, Garcia-Adeva A J 2014 Appl. Phys. A 115 433Google Scholar
[13] 张佳, 徐旭明, 何灵娟, 于天宝, 郭浩 2012 61 054213Google Scholar
Zhang J, Xu X M, He L J, Yu T B, Guo H 2012 Acta Phys. Sin. 61 054213Google Scholar
[14] Shen B, Wang P, Polson R, Menon R 2015 Nat. Photonics 9 378Google Scholar
[15] Huang J, Yang J B, Chen D B, Bai W, Han J M, Zhang Z J, Zhang J J, He X, Han Y X, Liang L M 2020 Nanophotonics 9 159Google Scholar
[16] Wang K Y, Ren X S, Chang W J, Lu L H, Liu D M, Zhang M M 2020 Photonics Res. 8 528Google Scholar
[17] Liu Z H, Liu X H, Xiao Z Y, Lu C C, Wang H Q, Wu Y, Hu X Y, Liu Y C, Zhang H Y, Zhang X D 2019 Optica 6 1367Google Scholar
[18] Huang H, Xu H Q, Wang H Q, Feng Y, Zhang H, Li J X 2022 Opt. Eng. 61 015105Google Scholar
[19] 黄辉, 胡晨岩, 田梓聪, 缪秋霞, 王慧琴 2021 70 234102Google Scholar
Huang H, Hu C Y, Tian Z C, Miu Q X, Wang H Q 2021 Acta Phys. Sin. 70 234102Google Scholar
[20] Lu J, Vuckovic J 2012 Opt. Express 20 7221Google Scholar
[21] Qi H X, Du Z C, Hu X Y, Yang J Y, Chu S S, Gong Q H 2022 Opto. Electron. 5 210061Google Scholar
[22] Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vuckovic J 2015 Nat. Photonics 9 374Google Scholar
[23] Ma L F, Li J, Liu Z H, Zhang Y X, Zhang N N, Zheng S Q, Lu C C 2021 Chin. Opt. Lett. 19 011301Google Scholar
[24] Su L, Piggott A Y, Sapra N V, Petykiewicz J, Vuckovic J 2018 ACS Photonics 5 301Google Scholar
[25] Han J M, Huang J, Wu J G, Yang J B 2020 Opt. Commun. 465 125606Google Scholar
[26] Yilmaz Y A, Alpkilic A M, Yeltik A, Kurt H 2020 Opt. Commun. 454 124522Google Scholar
[27] Yuan H, Huang J, Wang Z H, Zhang J P, Deng Y, Lin G L, Wu J G, Yang J B 2021 Results Phys. 27 104489Google Scholar
[28] Rojas-Labanda S, Stolpe M 2016 Struct. Multidiscipl. Optim. 53 1315Google Scholar
[29] Gu Q, Barbato M, Conte J P, Gill P E, McKenna F 2012 J. Struct. Eng. 138 822Google Scholar
[30] Izmailov A F, Solodov M V 2011 Math. Program 126 231Google Scholar
[31] Azizi D, Gholami A 2013 IEEE Electr. Insul. M. 29 69Google Scholar
[32] Wang F L, Xu X, Zhang C, Sun C L, Zhao J 2022 IEEE Photonics J. 14 6621606Google Scholar
[33] Yuan M W, Yang G, Song S J, Zhou L P, Minasian R, Yi X K 2022 Opt. Express 30 26201Google Scholar
计量
- 文章访问数: 2485
- PDF下载量: 50
- 被引次数: 0