搜索

x
中国物理学会期刊

EAST反磁剪切qmin\approx 2条件下磁流体力学不稳定性及内部输运垒物理实验结果简述

Summary of magnetohydrodynamic instabilities and internal transport barriers under condition of qmin\approx 2 in EAST tokamak

CSTR: 32037.14.aps.72.20230721
PDF
HTML
导出引用
  • 托卡马克装置内, 建立和维持内部输运垒结构是提高等离子体约束的重要保障. 本文简单概述了EAST反磁剪切q_\rmmin \approx 2实验条件下建立和维持内部输运垒的关联物理过程: “离轴锯齿”和双撕裂模不稳定性; 快离子激发的阿尔芬波不稳定性; 热粒子激发的低频模不稳定性等. 首先, “离轴锯齿”是判断实验条件q_\rmmin \leqslant 2的重要依据. 文中详细介绍了“离轴锯齿”的激发条件、分类方式和先兆模结构等基本特征, 其崩塌事件由m/n = 2/1双撕裂模磁重联诱发产生. 其次, 在“离轴锯齿”振荡期间, 快离子很容易激发比压阿尔芬本征模和反剪切阿尔芬本征模. 这两类阿尔芬本征模的环向模数为1 \leqslant n \leqslant 5, 径向位置为环向区域1.98\ \rmm \leqslant R \leqslant 2.07\ \rmm(磁轴R_0 \approx 1.9 \ \rmm, 归一化小半径0.2 \leqslant \rho \leqslant 0.45). 简述阿尔芬波的激发条件和3种不同物理量(热压力梯度、快离子分布函数和环向流速剪切)等之间的关系. 第三, 在“离轴锯齿”振荡期间, 热压力梯度可以诱发低频模不稳定性. 利用一般鱼骨模色散关系很容易得出EAST上低频模的基本特征: 1)离子抗磁漂移频率大小; 2)阿尔芬波极化方向; 3)反应型动理学气球模特征. 低频模不稳定性的激发不依赖快离子, 主要发生在高的压力梯度区\alpha \propto (1 + \tau) (1 + \eta_\rmi), \tau = T_\rme/T_\rmi, \eta_\rmi = L_n_\rmi/ L_T_\rmi, 也即是足够高的\tau\eta_\rmi. 最后, “离轴锯齿”不稳定性的抑制和内部输运垒结构的建立. EAST内q_\rmmin \approx 2条件下内部输运垒建立过程中包括3个重要过程: 1)切向(NBI1L)注入比垂直方向(NBI1R)注入的中性束更容易缓解“离轴锯齿”的爆发周期; 2)存在“离轴锯齿”的情况高效缓解微观不稳定性, 且此位形更有利于内部输运垒结构的建立; 3)内部输运垒建立过程中伴随阿尔芬波(1 \leqslant n \leqslant 5)不稳定性的激发, 内部输运垒维持期间存在热离子温度梯度激发的中尺度微观不稳定性(5 \leqslant n \leqslant 10)等. 因此, 理解和掌握“离轴锯齿”实验条件的建立和抑制、阿尔芬波的激发和快离子的再分布、热压力梯度相关不稳定性等物理过程, 对于内部输运垒形成机制的理解具有重要的借鉴意义.

     

    Establishment and sustainment of the structure of internal transport barriers (ITBs) is an important guarantee for the magnetic fusion plasma. The related physics processes for the establishing and sustaining of ITBs with q_\rmmin \approx 2 are simply summarized as follows: the “off-axis sawteeth” (OAS) mode instability and double tearing mode (DTM) instability, fast ions induced Alfvén eigenmode instability, thermal pressure gradient induced low-frequency modes (LFMs) instability, etc. Firstly, the burst of OAS is an important criterion for evaluating reversed q-profile with q_\rmmin \approx 2. The excitation conditions, classifications and the structures of precursor modes of OAS are given in detail, and the collapse event is triggered off by the magnetic reconnection of m/n = 2/1 DTM. Secondly, the beta-induced Alfvén eigenmode and reversed shear Alfvén eigenmode are easily excited by the fast ions during the oscillation of OAS. The toroidal mode numbers of the two kinds of Alfvén waves are 1 \leqslant n \leqslant 5, respectively, which are located at 1.98\ \rmm \leqslant R \leqslant 2.07\ \rmm with normalized minor radius 0.2 \leqslant \rho \leqslant 0.45. The excitation conditions are investigated for the condition of q_\rmmin \approx 2, and three different physical variables, i.e. thermal pressure gradient, fast ions distribution function, and the toroidal flow or flow shear are considered. Thirdly, the LFMs instabilities are excited by the pressure gradient during the oscillation of OAS. The general fishbone-like dispersion relationship (GFLDR) is adopted for solving the basic features of LFMs: 1) the frequency of LFMs scales with ion diamagnetic frequency; 2) the LFMs has the Alfvén polarization direction; 3) the LFMs are a reactive-type kinetic ballooning mode. The excitation of LFMs does not depend on the fast ions, which is taken place in a higher pressure gradient regime \alpha \propto (1 + \tau) (1 + \eta_\rmi), \tau = T_\rme/T_\rmi, \eta_\rmi = L_n_\rmi/ L_T_\rmi. In the end, the suppression of OAS and establishment of ITBs are achieved. Three important processes appear under the condition of q_\rmmin \approx 2 in EAST: 1) the tangential injection (NBI1L) of NBI is easier for the suppression of OAS than the perpendicular injection (NBI1R); 2) the micro-instability can be suppressed during the oscillation of OAS, and the reversed shear q-profile is more favorable in the establishment of the structure of ITBs; 3) the establishment of ITBs is accompanied by the excitation of Alfvén wave instability (bigger toroidal mode number: 1 \leqslant n \leqslant 5), the sustainment of ITBs is accompanied by the thermal ion temperature gradient induced instability (median size: 5 \leqslant n \leqslant 10). Therefore, for the establishment of ITBs, it is important to understand the establishment and suppression of OAS, the excitation of Alfvén wave instability and the redistributed fast ions, and the related instability of thermal pressure gradient.

     

    目录

    /

    返回文章
    返回
    Baidu
    map