-
液晶含量和外加电场类型是影响聚合物分散液晶薄膜电光性能的重要因素, 而对薄膜微观形貌的分析并不能直接反映电光性能的变化机理. 因此本文以液晶材料E7和光聚物NOA65共混制备的聚合物分散液晶薄膜作为研究对象, 通过对其极化特性的研究, 揭示了在不同液晶含量和不同类型电场下极化过程对薄膜电光性能的调控规律和微观机制. 结果表明, 在10–1—106 Hz频率范围内, 薄膜在低频、中频和高频存在3个松弛极化过程, 分别为热离子极化、界面极化和转向极化. 通过Arrhenius公式拟合计算了各极化过程的活化能, 发现随着液晶含量的增大, 转向极化的活化能从0.88 eV下降至0.83 eV, 导致液晶分子转向的阈值场强和饱和场强降低. 相比于交流电场, 直流电场下热离子极化形成内建电场, 导致阈值场强和饱和场强大幅增大, 而极化弛豫时间的延长会导致响应时间的延长. 此项研究对进一步分析和提升聚合物分散液晶薄膜的电光性能具有指导意义.The electro-optical properties of polymer dispersed liquid crystal film vary with liquid crystal content and externally applied electric field, but the analysis of the film morphology cannot directly reflect the mechanism of electro-optical properties. Therefore, the polymer dispersed liquid crystal film prepared by blending liquid crystal material E7 and photopolymer NOA65 is used. Herein, the dielectric polarization regulated electro-optical properties and their related mechanisms under different liquid crystal content and electric fields are revealed. The results show that in a frequency range of 10–1–106 Hz, the film exhibits three relaxation processes respectively at low frequency, medium frequency and high frequency, which are generated by thermionic polarization, interfacial polarization and orientation polarization. According to the Arrhenius equation, the activation energy values of such polarization processes are calculated. It is found that with the increase of liquid crystal content, the activation energy of orientation polarization decreases from 0.88 eV to 0.83 eV, leading the threshold field strength and the saturation field strength of the diversion of liquid crystal molecule to decrease. Thermionic polarization under DC electric field forms an internal electric field, which causes the threshold field strength and saturation field strength to increase greatly, as compared with the scenarios under AC electric field. Such a thermionic polarization also leads the polarization relaxation time to increase, resulting in the extension of response time. This study is of guiding significance in further analyzing and improving the electro-optical properties of polymer dispersed liquid crystal films.
-
Keywords:
- dielectric relaxation /
- electro-optical property /
- polarization /
- relaxation time
[1] Shen W B, Wang L, Zhong T J, Chen G, Li C X, Chen M, Zhang C H, Zhang L Y, Li K X, Yang Z, Yang H 2019 Polymer 160 53Google Scholar
[2] Hu G, Chen H X, Liu Z Q, Zhang S, Zhou Y, Zhu B L, Gu H Z 2020 Liq. Cryst. 47 1582Google Scholar
[3] Zhong T J, Mandle R J, Goodby J W, Zhang L Y, Zhang C H 2019 Polym. Adv. Technol. 30 2781Google Scholar
[4] Li C X, Chen M, Shen W B, Chen G, Zhang L Y, Yang H 2019 Liq. Cryst. 46 1718Google Scholar
[5] 聂永杰, 景钰, 张萌, 陈昊鹏, 赵现平, 赵腾飞, 项恩新, 王科, 鲁广昊, 朱远惟 2021 中国电力 54 144Google Scholar
Nie Y J, Jing Y, Zhang M, Chen H P, Zhao X P, Zhao T F, Xiang E X, Wang K, Lu G H, Zhu Y W 2021 Electric Power 54 144Google Scholar
[6] Nie Y J, Zhang M, Zhu Y W, Jing Y, Shi W L, Li G P, Chen H P, Jiang Y H, Zhao X P, Zhao T F, Lu G H, Li S T 2021 Materials 14 5901Google Scholar
[7] 龙洁, 李九生 2021 70 074201Google Scholar
Long J, Li J S 2021 Acta Phys. Sin. 70 074201Google Scholar
[8] Hemaida A, Ghosh A, Sundaram S, Mallick T K 2020 Sol. Energy 195 185Google Scholar
[9] 李文萃, 刘永刚, 宣丽 2011 60 046101Google Scholar
Li W C, Liu Y G, Xuan L 2011 Acta Phys. Sin. 60 046101Google Scholar
[10] Zhang W C, Fan D H, Gong Y L, Liang W L 2021 Liq. Cryst. 48 1643Google Scholar
[11] Jiang J H, McGraw G, Ma R Q, Brown J, Yang D K 2017 Opt. Express 25 3327Google Scholar
[12] Seo J, Nam S, Jeong J, Lee C, Kim H, Kim Y 2015 ACS Appl. Mater. Interfaces 7 504Google Scholar
[13] Nasir N, Hong H R, Rehman M A, Kumar S, Seo Y 2020 RSC Adv. 10 32225Google Scholar
[14] Meng X S, Li J, Lin Y Q, Liu X D, Zhao J W, Li D C, He Z H 2022 Crystals 12 163Google Scholar
[15] Shi Z H, He Z M, Li C S, Miao Z C, Wang D, Luan Y, Li Y Z, Zhao Y Z 2022 Appl. Mater. Today 29 101622Google Scholar
[16] Zhao Y Z, Li J Q, Yu Y, Zhao Y, Guo Z, Yao R J, Gao J J, Zhang Y M, Wang D 2022 Molecules 27 7265Google Scholar
[17] 陈菲, 徐荣青, 李若舟, 严静 2018 液晶与显示 33 631Google Scholar
Chen F, Xu R Q, Li R Z, Yan J 2018 Chin. J. Liq. Cryst. Disp. 33 631Google Scholar
[18] Liang Z, Zhao Y Z, Gao H, Wang D, Miao Z C, Cao H, Yang Z, He W L 2021 Liq. Cryst. 48 2016Google Scholar
[19] Nasir N, Kumar S, Kim M, Nguyen V, Suleman M, Park H M, Lee S, Kang D, Seo Y 2022 ACS Appl. Energy mater. 5 6986Google Scholar
[20] Meng X S, Li J, Lin Y Q, Liu X D, Liu N N, Ye W J, Li D C, He Z H 2021 Liq. Cryst. 48 1791Google Scholar
[21] Zhu Y W, Qiao N, Dong S Q, Qu G H, Chen Y, Lu W L, Qin Z Z, Li D F, Wu K N, Nie Y J, Liu B, Li S T, Lu G H 2022 Chem. Mater. 34 6505Google Scholar
[22] 成鹏飞, 李盛涛, 李建英 2012 61 187302Google Scholar
Cheng P F, Li S T, Li J Y 2012 Acta Phys. Sin. 61 187302Google Scholar
[23] 李国倡, 李盛涛 2019 68 239401Google Scholar
Li G C, Li S T 2019 Acta Phys. Sin. 68 239401Google Scholar
[24] Li G C, Zhou X G, Li X J, Wei Y H, Hao C C, Li S T, Lei Q Q 2020 High Volt. 5 280Google Scholar
[25] Yang J J, Wang Z C, Feng H, Wei Y H, Li G C, Zhu Y C, Hao C C, Lei Q Q, Li S T 2023 Ceram. Int. 49 14057Google Scholar
[26] 李盛涛, 王辉, 林春江, 李建英 2013 62 087701Google Scholar
Li S T, Wang H, Lin C J, Li J Y 2013 Acta Phys. Sin. 62 087701Google Scholar
[27] Costa M R, Altafim R A C, Mammana A P 2001 Liq. Cryst. 28 1779Google Scholar
[28] Islam R, Papathanassiou A N, Chan-Yu-King R, Roussel F 2016 Appl. Phys. Lett. 109 182901Google Scholar
-
-
[1] Shen W B, Wang L, Zhong T J, Chen G, Li C X, Chen M, Zhang C H, Zhang L Y, Li K X, Yang Z, Yang H 2019 Polymer 160 53Google Scholar
[2] Hu G, Chen H X, Liu Z Q, Zhang S, Zhou Y, Zhu B L, Gu H Z 2020 Liq. Cryst. 47 1582Google Scholar
[3] Zhong T J, Mandle R J, Goodby J W, Zhang L Y, Zhang C H 2019 Polym. Adv. Technol. 30 2781Google Scholar
[4] Li C X, Chen M, Shen W B, Chen G, Zhang L Y, Yang H 2019 Liq. Cryst. 46 1718Google Scholar
[5] 聂永杰, 景钰, 张萌, 陈昊鹏, 赵现平, 赵腾飞, 项恩新, 王科, 鲁广昊, 朱远惟 2021 中国电力 54 144Google Scholar
Nie Y J, Jing Y, Zhang M, Chen H P, Zhao X P, Zhao T F, Xiang E X, Wang K, Lu G H, Zhu Y W 2021 Electric Power 54 144Google Scholar
[6] Nie Y J, Zhang M, Zhu Y W, Jing Y, Shi W L, Li G P, Chen H P, Jiang Y H, Zhao X P, Zhao T F, Lu G H, Li S T 2021 Materials 14 5901Google Scholar
[7] 龙洁, 李九生 2021 70 074201Google Scholar
Long J, Li J S 2021 Acta Phys. Sin. 70 074201Google Scholar
[8] Hemaida A, Ghosh A, Sundaram S, Mallick T K 2020 Sol. Energy 195 185Google Scholar
[9] 李文萃, 刘永刚, 宣丽 2011 60 046101Google Scholar
Li W C, Liu Y G, Xuan L 2011 Acta Phys. Sin. 60 046101Google Scholar
[10] Zhang W C, Fan D H, Gong Y L, Liang W L 2021 Liq. Cryst. 48 1643Google Scholar
[11] Jiang J H, McGraw G, Ma R Q, Brown J, Yang D K 2017 Opt. Express 25 3327Google Scholar
[12] Seo J, Nam S, Jeong J, Lee C, Kim H, Kim Y 2015 ACS Appl. Mater. Interfaces 7 504Google Scholar
[13] Nasir N, Hong H R, Rehman M A, Kumar S, Seo Y 2020 RSC Adv. 10 32225Google Scholar
[14] Meng X S, Li J, Lin Y Q, Liu X D, Zhao J W, Li D C, He Z H 2022 Crystals 12 163Google Scholar
[15] Shi Z H, He Z M, Li C S, Miao Z C, Wang D, Luan Y, Li Y Z, Zhao Y Z 2022 Appl. Mater. Today 29 101622Google Scholar
[16] Zhao Y Z, Li J Q, Yu Y, Zhao Y, Guo Z, Yao R J, Gao J J, Zhang Y M, Wang D 2022 Molecules 27 7265Google Scholar
[17] 陈菲, 徐荣青, 李若舟, 严静 2018 液晶与显示 33 631Google Scholar
Chen F, Xu R Q, Li R Z, Yan J 2018 Chin. J. Liq. Cryst. Disp. 33 631Google Scholar
[18] Liang Z, Zhao Y Z, Gao H, Wang D, Miao Z C, Cao H, Yang Z, He W L 2021 Liq. Cryst. 48 2016Google Scholar
[19] Nasir N, Kumar S, Kim M, Nguyen V, Suleman M, Park H M, Lee S, Kang D, Seo Y 2022 ACS Appl. Energy mater. 5 6986Google Scholar
[20] Meng X S, Li J, Lin Y Q, Liu X D, Liu N N, Ye W J, Li D C, He Z H 2021 Liq. Cryst. 48 1791Google Scholar
[21] Zhu Y W, Qiao N, Dong S Q, Qu G H, Chen Y, Lu W L, Qin Z Z, Li D F, Wu K N, Nie Y J, Liu B, Li S T, Lu G H 2022 Chem. Mater. 34 6505Google Scholar
[22] 成鹏飞, 李盛涛, 李建英 2012 61 187302Google Scholar
Cheng P F, Li S T, Li J Y 2012 Acta Phys. Sin. 61 187302Google Scholar
[23] 李国倡, 李盛涛 2019 68 239401Google Scholar
Li G C, Li S T 2019 Acta Phys. Sin. 68 239401Google Scholar
[24] Li G C, Zhou X G, Li X J, Wei Y H, Hao C C, Li S T, Lei Q Q 2020 High Volt. 5 280Google Scholar
[25] Yang J J, Wang Z C, Feng H, Wei Y H, Li G C, Zhu Y C, Hao C C, Lei Q Q, Li S T 2023 Ceram. Int. 49 14057Google Scholar
[26] 李盛涛, 王辉, 林春江, 李建英 2013 62 087701Google Scholar
Li S T, Wang H, Lin C J, Li J Y 2013 Acta Phys. Sin. 62 087701Google Scholar
[27] Costa M R, Altafim R A C, Mammana A P 2001 Liq. Cryst. 28 1779Google Scholar
[28] Islam R, Papathanassiou A N, Chan-Yu-King R, Roussel F 2016 Appl. Phys. Lett. 109 182901Google Scholar
计量
- 文章访问数: 3832
- PDF下载量: 75
- 被引次数: 0