搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑原子亚稳态的镥金属蒸发过程模拟研究

赖赣平 张晓卫

引用本文:
Citation:

考虑原子亚稳态的镥金属蒸发过程模拟研究

赖赣平, 张晓卫

Simulation of lutetium metal evaporation with considering atomic metastable state

Lai Gan-Ping, Zhang Xiao-Wei
PDF
HTML
导出引用
  • 镥-177是目前全球医用同位素的研究热点之一, 可使用通过电子束物理气相沉积技术(EB-PVD)辅助生产和加工的镥-176经由反应堆辐照制得. 金属蒸发过程是EB-PVD的重要一环, 金属原子蒸气的各宏观特征量分布将直接影响后续的沉积镀膜过程. 本文基于直接模拟蒙特卡罗方法, 将原子亚稳态引入碰撞假设, 建立了金属蒸发过程的二维和三维模型, 对是否考虑镥原子亚稳态的金属蒸发过程中各宏观特征量进行分析比较, 并对中心处宏观特征量随狭缝开口大小和蒸发源表面温度的变化特点进行讨论. 研究结果表明, 原子亚稳态会导致经过束流装置的金属原子蒸气数密度降低、运动速度和速度的离散程度上升, 同时狭缝开口大小和蒸发源表面温度均会引发金属原子蒸气宏观特征量分布的变化. 在二维模型基础上进行的三维模拟结果与其变化一致, 本工作可为电子束金属蒸发过程的实验研究提供参考和指导.
    Lutetium-177, one of the current global research hotspots for medical isotopes, can be produced by reactor irradiation of lutetium-176, which can be produced and processed with the assistance of the electron beam physical vapor deposition (EB-PVD). The metal evaporation process is an important part of EB-PVD, which aims to convert solid metal into metal atomic vapor. The distribution of each macroscopic characteristic quantity, such as thermal population distribution, density distribution, velocity distribution, and temperature distribution of metal atomic vapor, will directly affect the utilization of metal vapor atoms, the subsequent deposition process, and coating process. In this paper, two-dimensional model and three-dimensional model of the metal evaporation process are established based on the direct simulation Monte Carlo method, and atomic metastable state is introduced into the collision assumption. The macroscopic characteristic quantities, such as the number density of metal atomic vapor, the motion velocity and the discrete degree of the total motion velocity in the evaporation process with or without considering the lutetium atomic metastable state, are analyzed and compared. The spatial distribution characteristics of each energy level of metal atomic vapor are observed, and the variation characteristics of the macroscopic characteristic quantities in the center with the slit opening size and the evaporation source surface temperature are discussed. The study results show that the number density of metal vapor passing through the beam flow device decreases, the average velocity in the x-direction and z-direction and the discrete degree of the total motion velocity increase, with the atomic metastable state taken into consideration. The beam flow device intensifies the transformation of the atomic energy level of the metal vapor and changes the physical parameters of the metal atomic vapor. At the same time, the slit opening size and the evaporation source surface temperature trigger off the change of the macroscopic characteristic quantity distribution of the metal vapor, including the degree of anomalous protrusion of each macroscopic characteristic quantity above the slit. The results of the three-dimensional simulation based on the two-dimensional model are consistent with the changes in the order of magnitude of data distribution and spatial distribution pattern, which can serve as a reference and guidance for the experimental study of the electron beam metal evaporation process.
      通信作者: 张晓卫, 2809024720@qq.com
      Corresponding author: Zhang Xiao-Wei, 2809024720@qq.com
    [1]

    卓连刚, 杨宇川, 岳海东, 熊晓玲, 王关全, 王海麟, 杨林, 林青川, 陈琪萍, 涂俊, 魏洪源 2022 同位素 35 217Google Scholar

    Zhuo L G, Yang Y C, Yue H D, Xiong X L, Wang G Q, Wang H L, Yang L, Lin Q C, Chen Q P, Tu J, Wei H Y 2022 J. Isot. 35 217Google Scholar

    [2]

    Bournaud C, Kelly A, Hindié E, Tenenbaum F, Faivre-Chauvet A, Courbon F, Taïeb D, Dierickx L O, Coriat R, Ansquer C 2017 Med. Nucl. 41 42Google Scholar

    [3]

    Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, Mittra E, Kunz P L, Kulke M H, Jacene H, Bushnell D, O’Dorisio T M, Baum R P, Kulkarni H R, Caplin M, Lebtahi R, Hobday T, Delpassand E, Van Cutsem E, Benson A, Srirajaskanthan R, Pavel M, Mora J, Berlin J, Grande E, Reed N, Seregni E, Öberg K, Lopera Sierra M, Santoro P, Thevenet T, Erion J L, Ruszniewski P, Kwekkeboom D, Krenning E, NETTER-1 Trial Investigators 2017 N. Engl. J. Med. 376 125Google Scholar

    [4]

    彭述明, 杨宇川, 谢翔, 钱达志 2020 科学通报 65 3526Google Scholar

    Peng S M, Yang Y C, Xie X, Qian D Z 2020 Chin Sci Bull 65 3526Google Scholar

    [5]

    胡映江, 王磊, 吴建荣, 李波, 罗宁, 陈云明, 曾俊杰, 孙志中, 贾致军, 张劲松 2023 同位素 36 83Google Scholar

    Hu Y J, Wang L, Wu J R, Li B, Luo N, Chen Y M, Zeng J J, Sun Z Z, Jia Z J, Zhang J S 2023 J. Isot. 36 83Google Scholar

    [6]

    张世宏, 王启民, 郑军 2020 气相沉积技术原理及应用 (北京: 冶金工业出版社) 第36, 37页

    Zhang S H, Wang Q M, Zheng J 2020 Principle and Application of Vapor Deposition Technology (Beijing: Metallurgical Industry Press) pp36, 37

    [7]

    赖奇, 李俊翰, 吴恩辉, 崔晏, 李亮, 廖先杰 2020 钢铁钒钛 41 76Google Scholar

    Lai Q, Li J H, Wu E H, Cui Y, Li L, Liao X J 2020 Iron, Steel, Vanadium, Titanium 41 76Google Scholar

    [8]

    杨光, 刘欢, 王丁丁, 罗立平, 吕绪明, 祁阳 2021 真空 58 81Google Scholar

    Yang G, Liu H, Wang D D, Luo L P, Lv X M, Qi Y 2021 Vacuum (Shenyang, China) 58 81Google Scholar

    [9]

    滕晓丹, 彭徽, 李刘合, 郭洪波, 宫声凯 2023 航空制造技术 66 40Google Scholar

    Teng X D, Peng H, Li L H, Guo H B, Gong S K 2023 Aeronautical Manufacturing Technology 66 40Google Scholar

    [10]

    王德武 1999 激光分离同位素理论及其应用 (北京: 原子能出版社) 第338—340页

    Wang D W 1999 Theory and Application of Laser Isotope Separation (Beijing: Atomic Energy Press) pp338–340

    [11]

    谢国锋, 王德武, 应纯同 2002 51 584Google Scholar

    Xie G F, Wang D W, Ying C T 2002 Acta Phys. Sin. 51 584Google Scholar

    [12]

    谢国锋, 王德武, 应纯同 2002 51 2286Google Scholar

    Xie G F, Wang D W, Ying C T 2002 Acta Phys. Sin. 51 2286Google Scholar

    [13]

    翟蕊 2019 硕士学位论文 (北京: 清华大学)

    Zhai R 2019 M. S. Dissertation (Beijing: Tsinghua University

    [14]

    卢肖勇, 张小章 2018 67 154701Google Scholar

    Lu X Y, Zhang X Z 2018 Acta Phys. Sin. 67 154701Google Scholar

    [15]

    Lu X Y, Zhang X Z, Zhang Z Z 2018 Chin. Phys. B 27 124702Google Scholar

    [16]

    Lu X Y, Chai J J 2019 Chin. Phys. B 28 074702Google Scholar

    [17]

    卢肖勇 2020 博士学位论文 (北京: 清华大学)

    Lu X Y 2020 Ph. D. Dissertation (Beijing: Tsinghua University

    [18]

    Fan J, Boyd I D, Shelton C 2000 J. Vac. Sci. Technol. A 18 2937Google Scholar

    [19]

    Balakrishnan J, Boyd I D, Braun D G 2000 J. Vac. Sci. Technol. A 18 907Google Scholar

    [20]

    谢国锋, 王德武, 应纯同 2002 原子能科学技术 36 147Google Scholar

    Xie G F, Wang D W, Ying C T 2002 Atom. Energ. Sci. Tech. 36 147Google Scholar

    [21]

    Bird G A 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (New York: Oxford University Press) pp218–220

    [22]

    沃尔夫冈·戴姆特瑞德 著 (姬扬 译) 2012 激光光谱学 (第1卷: 基础理论) (北京: 科学出版社) 第10—13页

    Demtröder W (translated by Ji Y) 2012 Laser Spectroscopy (Vol. 1: Basic Principles) (Beijing: Science Press) pp10–13

    [23]

    李阳 2015 硕士学位论文 (天津: 天津大学)

    Li Y 2015 M. S. Dissertation (Tianjin: Tianjin University

    [24]

    沈青 2003 稀薄气体动力学 (北京: 国防工业出版社) 第122—127页

    Shen Q 2003 Rarefied Gas Dynamics (Beijing: National Defense Industry Press) pp122–127

    [25]

    王权, 李小江, 陈勇, 陈英 2019 化学反应工程与工艺 35 129Google Scholar

    Wang Q, Li X J, Chen Y, Chen Y 2019 Chem. React. Eng. Technol. 35 129Google Scholar

  • 图 1  镥前5个能级的热布居分布比例

    Fig. 1.  Thermal population distribution proportion of lutetium’s first five energy levels.

    图 2  二维非弹性碰撞的能量变化示意图

    Fig. 2.  Schematic diagram of the energy change in a two-dimensional inelastic collision.

    图 3  二维和三维模型示意图 (a) 二维模型; (b) 三维模型

    Fig. 3.  Schematic diagram of two-dimensional and three-dimensional models: (a) Two-dimensional model; (b) three-dimensional model.

    图 4  金属原子蒸气各宏观特征量的二维空间分布(左为不考虑原子亚稳态, 右为考虑原子亚稳态) (a) 数密度$n$; (b) 总运动速度的离散程度$T$; (c) $x$方向平均速度${u_x}$; (d) $z$方向平均速度${u_z}$

    Fig. 4.  Two-dimensional spatial distribution of macroscopic characteristic quantities of metal atomic vapor (left is not considering atomic metastable states, right is considering atomic metastable states): (a) Number density $n$; (b) the discrete degree of total motion velocity $T$; (c) average velocity ${u_x}$ in the $x$-direction; (d) average velocity ${u_z}$ in the $z$-direction.

    图 5  各能级占比分布图 (a) 能级1; (b) 能级2; (c) 能级3; (d) 能级4

    Fig. 5.  Layout of the proportion of each energy level: (a) Energy level 1; (b) energy level 2; (c) energy level 3; (d) energy level 4.

    图 6  金属原子蒸气在蒸发源中心位置处的宏观特征量变化曲线(不同狭缝开口大小) (a) 数密度$n$; (b) 总运动速度的离散程度$T$; (c) $z$方向平均速度${u_z}$

    Fig. 6.  Variation curves of macroscopic characteristic quantities of metal atomic vapor at the center of the evaporation source (different slit opening sizes): (a) Number density $n$; (b) the discrete degree of total motion velocity $T$; (c) average velocity ${u_z}$ in the $z$-direction.

    图 7  金属原子蒸气在蒸发源中心位置处的宏观特征量变化曲线(不同蒸发源表面温度) (a) 数密度$n$; (b) 总运动速度的离散程度$T$; (c) $z$方向平均速度${u_z}$

    Fig. 7.  Variation curves of macroscopic characteristic quantities of metal atomic vapor at the center of the evaporation source (different surface temperatures of evaporation source): (a) Number density $n$; (b) the discrete degree of total motion velocity $T$; (c) average velocity ${u_z}$ in the $z$-direction.

    图 8  金属原子蒸气各宏观特征量的三维空间分布 (a) 数密度$n$; (b) 总运动速度的离散程度$T$; (c) $x$方向平均速度${u_x}$; (d) $y$方向平均速度${u_y}$; (e) $z$方向平均速度${u_z}$

    Fig. 8.  Three-dimensional spatial distribution of macroscopic characteristic quantities of metal atomic vapor: (a) Number density $n$; (b) the discrete degree of total motion velocity $T$; (c) average velocity ${u_x}$ in the $x$-direction; (d) average velocity ${u_y}$ in the $y$-direction; (e) average velocity ${u_z}$ in the $z$-direction.

    Baidu
  • [1]

    卓连刚, 杨宇川, 岳海东, 熊晓玲, 王关全, 王海麟, 杨林, 林青川, 陈琪萍, 涂俊, 魏洪源 2022 同位素 35 217Google Scholar

    Zhuo L G, Yang Y C, Yue H D, Xiong X L, Wang G Q, Wang H L, Yang L, Lin Q C, Chen Q P, Tu J, Wei H Y 2022 J. Isot. 35 217Google Scholar

    [2]

    Bournaud C, Kelly A, Hindié E, Tenenbaum F, Faivre-Chauvet A, Courbon F, Taïeb D, Dierickx L O, Coriat R, Ansquer C 2017 Med. Nucl. 41 42Google Scholar

    [3]

    Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, Mittra E, Kunz P L, Kulke M H, Jacene H, Bushnell D, O’Dorisio T M, Baum R P, Kulkarni H R, Caplin M, Lebtahi R, Hobday T, Delpassand E, Van Cutsem E, Benson A, Srirajaskanthan R, Pavel M, Mora J, Berlin J, Grande E, Reed N, Seregni E, Öberg K, Lopera Sierra M, Santoro P, Thevenet T, Erion J L, Ruszniewski P, Kwekkeboom D, Krenning E, NETTER-1 Trial Investigators 2017 N. Engl. J. Med. 376 125Google Scholar

    [4]

    彭述明, 杨宇川, 谢翔, 钱达志 2020 科学通报 65 3526Google Scholar

    Peng S M, Yang Y C, Xie X, Qian D Z 2020 Chin Sci Bull 65 3526Google Scholar

    [5]

    胡映江, 王磊, 吴建荣, 李波, 罗宁, 陈云明, 曾俊杰, 孙志中, 贾致军, 张劲松 2023 同位素 36 83Google Scholar

    Hu Y J, Wang L, Wu J R, Li B, Luo N, Chen Y M, Zeng J J, Sun Z Z, Jia Z J, Zhang J S 2023 J. Isot. 36 83Google Scholar

    [6]

    张世宏, 王启民, 郑军 2020 气相沉积技术原理及应用 (北京: 冶金工业出版社) 第36, 37页

    Zhang S H, Wang Q M, Zheng J 2020 Principle and Application of Vapor Deposition Technology (Beijing: Metallurgical Industry Press) pp36, 37

    [7]

    赖奇, 李俊翰, 吴恩辉, 崔晏, 李亮, 廖先杰 2020 钢铁钒钛 41 76Google Scholar

    Lai Q, Li J H, Wu E H, Cui Y, Li L, Liao X J 2020 Iron, Steel, Vanadium, Titanium 41 76Google Scholar

    [8]

    杨光, 刘欢, 王丁丁, 罗立平, 吕绪明, 祁阳 2021 真空 58 81Google Scholar

    Yang G, Liu H, Wang D D, Luo L P, Lv X M, Qi Y 2021 Vacuum (Shenyang, China) 58 81Google Scholar

    [9]

    滕晓丹, 彭徽, 李刘合, 郭洪波, 宫声凯 2023 航空制造技术 66 40Google Scholar

    Teng X D, Peng H, Li L H, Guo H B, Gong S K 2023 Aeronautical Manufacturing Technology 66 40Google Scholar

    [10]

    王德武 1999 激光分离同位素理论及其应用 (北京: 原子能出版社) 第338—340页

    Wang D W 1999 Theory and Application of Laser Isotope Separation (Beijing: Atomic Energy Press) pp338–340

    [11]

    谢国锋, 王德武, 应纯同 2002 51 584Google Scholar

    Xie G F, Wang D W, Ying C T 2002 Acta Phys. Sin. 51 584Google Scholar

    [12]

    谢国锋, 王德武, 应纯同 2002 51 2286Google Scholar

    Xie G F, Wang D W, Ying C T 2002 Acta Phys. Sin. 51 2286Google Scholar

    [13]

    翟蕊 2019 硕士学位论文 (北京: 清华大学)

    Zhai R 2019 M. S. Dissertation (Beijing: Tsinghua University

    [14]

    卢肖勇, 张小章 2018 67 154701Google Scholar

    Lu X Y, Zhang X Z 2018 Acta Phys. Sin. 67 154701Google Scholar

    [15]

    Lu X Y, Zhang X Z, Zhang Z Z 2018 Chin. Phys. B 27 124702Google Scholar

    [16]

    Lu X Y, Chai J J 2019 Chin. Phys. B 28 074702Google Scholar

    [17]

    卢肖勇 2020 博士学位论文 (北京: 清华大学)

    Lu X Y 2020 Ph. D. Dissertation (Beijing: Tsinghua University

    [18]

    Fan J, Boyd I D, Shelton C 2000 J. Vac. Sci. Technol. A 18 2937Google Scholar

    [19]

    Balakrishnan J, Boyd I D, Braun D G 2000 J. Vac. Sci. Technol. A 18 907Google Scholar

    [20]

    谢国锋, 王德武, 应纯同 2002 原子能科学技术 36 147Google Scholar

    Xie G F, Wang D W, Ying C T 2002 Atom. Energ. Sci. Tech. 36 147Google Scholar

    [21]

    Bird G A 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (New York: Oxford University Press) pp218–220

    [22]

    沃尔夫冈·戴姆特瑞德 著 (姬扬 译) 2012 激光光谱学 (第1卷: 基础理论) (北京: 科学出版社) 第10—13页

    Demtröder W (translated by Ji Y) 2012 Laser Spectroscopy (Vol. 1: Basic Principles) (Beijing: Science Press) pp10–13

    [23]

    李阳 2015 硕士学位论文 (天津: 天津大学)

    Li Y 2015 M. S. Dissertation (Tianjin: Tianjin University

    [24]

    沈青 2003 稀薄气体动力学 (北京: 国防工业出版社) 第122—127页

    Shen Q 2003 Rarefied Gas Dynamics (Beijing: National Defense Industry Press) pp122–127

    [25]

    王权, 李小江, 陈勇, 陈英 2019 化学反应工程与工艺 35 129Google Scholar

    Wang Q, Li X J, Chen Y, Chen Y 2019 Chem. React. Eng. Technol. 35 129Google Scholar

  • [1] 杜小娇, 魏龙, 孙羽, 胡水明. 自由电子激光制备高强度亚稳态氦原子和类氦离子.  , 2024, 73(15): 150201. doi: 10.7498/aps.73.20240554
    [2] 张钧尧, 熊静逸, 魏少强, 李云飞, 卢肖勇. 镥原子自电离态的共振电离谱.  , 2023, 72(19): 193203. doi: 10.7498/aps.72.20230978
    [3] 李国壮, 张晟, 焦志宏, 李新霞. 基于多体经典轨迹蒙特卡罗方法的H+, Li3+, Be4+, O7+与He原子电荷交换过程.  , 2022, 71(3): 035201. doi: 10.7498/aps.71.20211470
    [4] 王德鑫, 张苏雅拉吐, 蒋伟, 任杰, 王金成, 唐靖宇, 阮锡超, 王宏伟, 陈志强, 黄美容, 唐鑫, 胡新荣, 李鑫祥, 刘龙祥, 刘丙岩, 孙慧, 张岳, 郝子锐, 宋娜, 李雪, 牛丹丹, 利国, 蒙古夫. 不同厚度镥样品中子俘获反应实验研究.  , 2022, 71(7): 072901. doi: 10.7498/aps.71.20212051
    [5] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流.  , 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [6] 许育培, 李树. 热辐射输运问题的高效蒙特卡罗模拟方法.  , 2020, 69(2): 029501. doi: 10.7498/aps.69.20191315
    [7] 卢肖勇, 张小章. 背景气体对金属原子二维平面蒸发过程的影响.  , 2018, 67(15): 154701. doi: 10.7498/aps.67.20180066
    [8] 丛东亮, 许朋, 王叶兵, 常宏. 锶热原子束二维准直的动力学过程的蒙特卡罗模拟及实验研究.  , 2013, 62(15): 153702. doi: 10.7498/aps.62.153702
    [9] 何寿杰, 哈静, 刘志强, 欧阳吉庭, 何锋. 流体-亚稳态原子传输混合模型模拟空心阴极放电特性.  , 2013, 62(11): 115203. doi: 10.7498/aps.62.115203
    [10] 郭福明, 宋阳, 陈基根, 曾思良, 杨玉军. 含时量子蒙特卡罗方法研究两电子原子在强激光作用下电子的动力学行为.  , 2012, 61(16): 163203. doi: 10.7498/aps.61.163203
    [11] 程存峰, 杨国民, 蒋蔚, 潘虎, 孙羽, 刘安雯, 成国胜, 胡水明. 激光冷却获得高亮度的亚稳态惰性气体原子束和原子阱.  , 2011, 60(10): 103701. doi: 10.7498/aps.60.103701
    [12] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真.  , 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [13] 鞠志萍, 曹午飞, 刘小伟. 蒙特卡罗模拟单阻止柱双散射体质子束流扩展方法.  , 2010, 59(1): 199-202. doi: 10.7498/aps.59.199
    [14] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用.  , 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [15] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟.  , 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
    [16] 薄 勇, 王德武, 应纯同. 考虑液面凹陷时金属熔化与蒸发的数值研究.  , 2004, 53(6): 1887-1894. doi: 10.7498/aps.53.1887
    [17] 谢国锋, 王德武, 应纯同. 电子枪功率与束宽对金属原子蒸气特性的影响.  , 2002, 51(3): 584-589. doi: 10.7498/aps.51.584
    [18] 谢国锋, 王德武, 应纯同. 电子束激发原子对金属蒸发的影响.  , 2002, 51(10): 2286-2290. doi: 10.7498/aps.51.2286
    [19] 王樨德, 潘正瑛, 黄发泱, 夏荣. 用蒙特-卡罗方法模拟质子X荧光分析中的荧光增强因子.  , 1989, 38(5): 776-783. doi: 10.7498/aps.38.776
    [20] 张毓英, 李桂棠, 孙騊亨. 对汞亚稳态瞬态特性的研究.  , 1987, 36(9): 1154-1160. doi: 10.7498/aps.36.1154
计量
  • 文章访问数:  2852
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-14
  • 修回日期:  2023-06-20
  • 上网日期:  2023-07-13
  • 刊出日期:  2023-09-20

/

返回文章
返回
Baidu
map