-
高性能硅基太赫兹调制器是构建超宽带太赫兹-光纤混合通信系统的关键器件之一. 提出了一种基于钙钛矿/石墨烯/硅(MAPbI3/Graphene/Si)复合结构的近红外光驱动的超宽带大调制深度太赫兹调制器. 实验结果表明, 石墨烯薄膜和钙钛矿空穴传输层在近红外光驱动下可有效地促进界面电荷分离, 增大载流子复合寿命, 显著增强器件的表面电导率, 进一步调控太赫兹波的传输幅度, 实现光控型太赫兹波调制器的功能. 通过波长808 nm的近红外调制激励源, 对器件在0.2—2.5 THz超宽频率范围的太赫兹透射特性进行表征, 实验用6.1 mW/mm2的低功率密度近红外光驱动下实现了高达88.3%的大调制深度, 远高于裸硅基底的调制深度(约14.0%), 具有高灵敏、宽带和大调制深度等显著优势, 并且建立了相应的半解析器件模型, 仿真验证了实验结果. 所提出的MAPbI3/Graphene复合薄膜在增强硅基调制器性能方面效果显著, 为未来实现硅基太赫兹调制器在近红外太赫兹-光纤混合通信系统的集成提供了一种新策略.
-
关键词:
- 太赫兹调制器 /
- MAPbI3/Graphene复合薄膜 /
- 近红外光驱动 /
- 高灵敏
A high-performance silicon-based terahertz modulator is one of the key devices for building an ultrawideband terahertz-fiber hybrid communication system. In this paper, an ultrawideband terahertz modulator with large modulation depth based on a chalcogenide/graphene/silicon (MAPbI3/Graphene/Si) composite structure driven by near-infrared light (NIR) is proposed. The experimental results show that the graphene thin film and the chalcogenide hole transport layer can effectively promote the interfacial charge separation, increase the carrier complex lifetime, significantly enhance the surface conductivity of the device, further modulate the terahertz wave transmission amplitude, and realize the function of the light-controlled terahertz wave modulator under the NIR light drive. The terahertz transmission characteristics of the device are characterized by an 808 nm NIR modulation excitation source, and a large modulation depth of up to 88.3% is achieved in an ultra-wide frequency range of 0.2–2.5 THz and a low power density of 6.1 mW/mm2 driven by NIR light, which is much higher than that of the bare silicon substrate (14.0%), with the significant advantages of high sensitivity, broadband, and large modulation depth. The corresponding semi-analytical device model is established and the experimental results are verified by simulation. The proposed MAPbI3/Graphene composite thin film is effective in enhancing the silicon-based modulator performance and provides a new strategy for the future integration of silicon-based terahertz modulators in NIR terahertz-fiber hybrid communication systems.-
Keywords:
- terahertz modulator /
- MAPbI3/Graphene composite thin film /
- near-infrared optical drive /
- high sensitivity
[1] Ma J J, Shrestha R, Adelberg J, Yeh C Y, Hossain Z, Knightly E, Jornet J M, Mittleman D M 2018 Nature 563 89Google Scholar
[2] Kawano Y 2013 Contemp. Phys. 54 143Google Scholar
[3] Yan Z Y, Zhu L G, Meng K, Huang W X, Shi Q W 2022 Trends Biotechnol. 40 816Google Scholar
[4] Smith R A 2021 Appl. Sci. 11 11724Google Scholar
[5] Wang R Q, Xie L J, Hameed S, Wang C, Ying Y B 2018 Carbon 132 42Google Scholar
[6] 张真真, 黎华, 曹俊诚 2018 67 090702Google Scholar
Zhang Z Z, Li H, Cao J C 2018 Acta Phys. Sin. 67 090702Google Scholar
[7] Xu G F, Skorobogatiy M 2022 J. Infrared Millim. Terahertz Waves 43 728Google Scholar
[8] Song Q, Chen H, Zhang M, Li L, Yang J B, Yan P G 2021 APL Photonics 6 056103Google Scholar
[9] Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S, Zhang H W 2018 Adv. Opt. Mater. 6 1700620Google Scholar
[10] Kakenov N, Ergoktas M S, Balci O, Kocabas C 2018 2D Mater. 5 035018Google Scholar
[11] Zeng H X, Gong S, Wang L, Zhou T C, Zhang Y, Lan F, Cong X, Wang L Y, Song T Y, Zhao Y C, Yang Z Q, Mittleman D M 2022 Nanophotonics 11 415Google Scholar
[12] Wang J, Tian H, Li S, Li L, Guo W P, Zhou Z X 2020 Opt. Lett. 45 1276Google Scholar
[13] 田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武 2015 64 028401Google Scholar
Tian W, Wen Q Y, Chen Z, Yang Q H, Jing Y L, Zhang H W 2015 Acta Phys. Sin. 64 028401Google Scholar
[14] Hochberg M, Baehr J T, Wang G X, Shearn M, Harvard K, Luo J D, Chen B Q, Shi Z W, Lawson R, Sullivan P, Jen K Y A, Dalton L, Scherer A 2006 Nat. Mater. 5 703Google Scholar
[15] Feng T D, Huang W X, Zhu H F, Lu X G, Das S, Shi Q W 2021 ACS Appl. Mater. Inter. 13 10574Google Scholar
[16] Feng T D, Hu Y W, Chang X, Wan Xia Huang, Wang D Y, Zhu H F, An T Y, Li W P, Meng K, Lu X G, Roul B, Das S, Deng H, Zaytsev K I, Zhu L G, Shi Q W 2023 ACS Appl. Mater. Inter. 15 7592Google Scholar
[17] Ren Z, Xu J Y, Liu J M, Li B L, Zhou C, Sheng Z G 2022 ACS Appl. Mater. Inter. 14 26923Google Scholar
[18] Xing P K, Wu Q 2022 Opt. Mater. 133 112832Google Scholar
[19] 孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 62 017202Google Scholar
Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202Google Scholar
[20] Zhang P J, Cai T, Zhou Q L, She G W, Liang W L, Deng Y W, Ning T Y, Shi W S, Zhang L L, Zhang C L 2022 Nano Lett. 22 1541Google Scholar
[21] Zhou R Y, Wang C, Huang Y X, Xu W D, Xie L J, Ying Y B 2020 Opt. Lasers Eng. 133 106147Google Scholar
[22] Yoshioka K, Minam Y, Shudo K I, Dao T D, Nagao T, Kitajima M, Takeda J, Katayama I 2015 Nano Lett. 15 1036Google Scholar
[23] Lai W E, Zhu Q, Liu G, Shi G H, Gan Y C, Amini A, Cheng C 2022 J. Phys. D:Appl. Phys. 55 505103Google Scholar
[24] Zhao X L, Lou J, Xu X, Yu Y, Wang G M, Qi J H, Zeng L X, He J, Liang J G, Huang Y D, Zhang D P, Chang C 2022 Adv. Opt. Mater. 10 2102589Google Scholar
[25] Zhou Z, Chen Y L, Feng L S 2016 J. Infrared Millim. Terahertz Waves 37 953Google Scholar
[26] Ruan Z L, Pei L, Ning T G, Wang J S, Zheng J J, Li J, Xie Y H, Zhao Q, Wang J 2020 Opt. Commun. 469 125817Google Scholar
[27] Cheng L, Jin Z M, Ma Z W, Su F H, Zhao Y, Zhang Y Z, Su T Y, Sun Y, Xu X L, Meng Z, Bian Y C, Sheng Z G 2018 Adv. Opt. Mater. 6 1700877Google Scholar
[28] Qiu Q X, Huang Z M 2021 Adv. Mater. 33 2008126Google Scholar
[29] Weis P, L J, Pomar G, Hoh M, Reinhard B, Brodyansk A, Rahm M 2012 ACS Nano 6 9118Google Scholar
[30] Lai W E, Ge C D, Yuan H, Dong Q F, Yang D R, Fang Y J 2020 Adv. Mater. Technol. 5 1901090Google Scholar
[31] Wang K H, Li J S, Yao J Q 2020 J. Infrared Millim. Terahertz Waves 41 557Google Scholar
[32] Yang M S, Li T T, Yan X, Liang L J, Yao H Y, Sun Z Q, Li J, Li J, Wei D Q, Wang M, Ye Y X, Song X X, Zhang H T, Yao J Q 2022 ACS Appl. Mater. Inter. 14 2155Google Scholar
[33] Wang H X, Ling F R, Luo C Y, Wang C H, Xiao Y R, Chang Z Y, Wu X C, Wang W J, Yao J Q 2022 Opt. Mater. 127 112235Google Scholar
[34] Chen S, Fan F, Miao Y P, He X T, Zhang K L, Chang S J 2016 Nanoscale 8 4713Google Scholar
[35] Wei M Q, Zhang D N, Li Y P, Zhang L, Jin L C, Wen T L, Bai F M, Zhang H W 2019 Nanoscale Res. Lett. 14 159Google Scholar
[36] Mo C, Liu J B, Wei D S, Wu H L, Wen Q Y, Ling D X 2020 Sensors 20 2198Google Scholar
[37] Liu D D, Wang W, Xiong L Y, Ji H Y, Zhang B, Shen J L 2019 Opt. Mater. 96 109368Google Scholar
[38] Li S H, Li J S 2018 Appl. Phys. B 124 224Google Scholar
-
图 1 (a) MAPbI3/Graphene基调制器结构示意图, 左侧为三维示意图, 右侧为侧视图; (b)硅基底上MAPbI3/Graphene复合薄膜的SEM表征图, 左侧为俯视图, 右侧为侧视图; (c) MAPbI3薄膜在波长500—800 nm下的吸收光谱
Fig. 1. (a) Schematic diagram of MAPbI3/Graphene-based modulator structure; left, 3D schematic; right, side view; (b) SEM characterization of MAPbI3/Graphene composite thin film on silicon substrate; left, top view; right, side view; (c) absorption spectrum of MAPbI3 thin film at the wavelength range of 500–800 nm.
图 3 (a) Graphene/Si调制器和(b) MAPbI3/Graphene/Si调制器的I-V曲线测试示意图; (c) Graphene/Si调制器和(d) MAPbI3/Graphene/Si调制器在光照(红线)和无光照(蓝线)下的I-V测试曲线; (e) Graphene/Si调制器和(f) MAPbI3/Graphene/Si调制器在0.5 V偏压, 15.1 mW功率光激励下的开关响应曲线
Fig. 3. Schematic diagram of I-V curve test for (a) Graphene/Si modulator and (b) MAPbI3/Graphene/Si modulator; I-V test curves for (c) Graphene/Si modulator and (d) MAPbI3/Graphene/Si modulator under light (red line) and no light (blue line); switching response curves of (e) Graphene/Si modulator and (f) MAPbI3/Graphene/Si modulator under light excitation with 0.5 V bias and 15.1 mW power.
图 4 在不同功率密度的激光照射下通过(a)裸硅和(b) MAPbI3/Graphene/Si传输的太赫兹脉冲时域波形; 在不同功率密度的激光照射下通过(c)裸硅和(d) MAPbI3/Graphene/Si传输的太赫兹脉冲的归一化透射; 在不同功率密度的激光照射下(e) 裸硅和(f) MAPbI3/Graphene/Si的太赫兹调制深度
Fig. 4. Time domain waveforms of terahertz pulses transmitted through (a) bare silicon and (b) MAPbI3/Graphene/Si under laser irradiation at different power density; normalized transmission of terahertz pulses transmitted through (c) bare silicon and (d) MAPbI3/Graphene/Si under laser irradiation at different power density; terahertz modulation depth of (e) bare silicon and (f) MAPbI3/Graphene/Si under laser irradiation at different power density.
表 1 常见太赫兹调制器性能比较
Table 1. Performance comparison of common terahertz modulators.
Material Wavelength/nm Power density/(mW·mm–2) Spectral range/THz MD/% Reference MAPbI3/Graphene/Si 808 6.1 0.2—2.5 88.3 This work MAPbI3/SiO2 1064 53.1 0.1—1.0 66.2 [33] MoS2/Si 532 2.4 0.2—2.0 75.0 [34] Graphene/TiO2/Si 808 71.3 0.3—1.7 88.0 [35] Silicon nanotip 808 60.0 0.1—4.0 91.6 [36] MAPbBr3/Si 450 30.0 0.2—2.6 80.0 [37] CsPbBr3/Si 450 20.0 0.23—0.35 45.5 [38] Graphene/Si 780 159.2 0.2—2.0 99.0 [29] -
[1] Ma J J, Shrestha R, Adelberg J, Yeh C Y, Hossain Z, Knightly E, Jornet J M, Mittleman D M 2018 Nature 563 89Google Scholar
[2] Kawano Y 2013 Contemp. Phys. 54 143Google Scholar
[3] Yan Z Y, Zhu L G, Meng K, Huang W X, Shi Q W 2022 Trends Biotechnol. 40 816Google Scholar
[4] Smith R A 2021 Appl. Sci. 11 11724Google Scholar
[5] Wang R Q, Xie L J, Hameed S, Wang C, Ying Y B 2018 Carbon 132 42Google Scholar
[6] 张真真, 黎华, 曹俊诚 2018 67 090702Google Scholar
Zhang Z Z, Li H, Cao J C 2018 Acta Phys. Sin. 67 090702Google Scholar
[7] Xu G F, Skorobogatiy M 2022 J. Infrared Millim. Terahertz Waves 43 728Google Scholar
[8] Song Q, Chen H, Zhang M, Li L, Yang J B, Yan P G 2021 APL Photonics 6 056103Google Scholar
[9] Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S, Zhang H W 2018 Adv. Opt. Mater. 6 1700620Google Scholar
[10] Kakenov N, Ergoktas M S, Balci O, Kocabas C 2018 2D Mater. 5 035018Google Scholar
[11] Zeng H X, Gong S, Wang L, Zhou T C, Zhang Y, Lan F, Cong X, Wang L Y, Song T Y, Zhao Y C, Yang Z Q, Mittleman D M 2022 Nanophotonics 11 415Google Scholar
[12] Wang J, Tian H, Li S, Li L, Guo W P, Zhou Z X 2020 Opt. Lett. 45 1276Google Scholar
[13] 田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武 2015 64 028401Google Scholar
Tian W, Wen Q Y, Chen Z, Yang Q H, Jing Y L, Zhang H W 2015 Acta Phys. Sin. 64 028401Google Scholar
[14] Hochberg M, Baehr J T, Wang G X, Shearn M, Harvard K, Luo J D, Chen B Q, Shi Z W, Lawson R, Sullivan P, Jen K Y A, Dalton L, Scherer A 2006 Nat. Mater. 5 703Google Scholar
[15] Feng T D, Huang W X, Zhu H F, Lu X G, Das S, Shi Q W 2021 ACS Appl. Mater. Inter. 13 10574Google Scholar
[16] Feng T D, Hu Y W, Chang X, Wan Xia Huang, Wang D Y, Zhu H F, An T Y, Li W P, Meng K, Lu X G, Roul B, Das S, Deng H, Zaytsev K I, Zhu L G, Shi Q W 2023 ACS Appl. Mater. Inter. 15 7592Google Scholar
[17] Ren Z, Xu J Y, Liu J M, Li B L, Zhou C, Sheng Z G 2022 ACS Appl. Mater. Inter. 14 26923Google Scholar
[18] Xing P K, Wu Q 2022 Opt. Mater. 133 112832Google Scholar
[19] 孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 62 017202Google Scholar
Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202Google Scholar
[20] Zhang P J, Cai T, Zhou Q L, She G W, Liang W L, Deng Y W, Ning T Y, Shi W S, Zhang L L, Zhang C L 2022 Nano Lett. 22 1541Google Scholar
[21] Zhou R Y, Wang C, Huang Y X, Xu W D, Xie L J, Ying Y B 2020 Opt. Lasers Eng. 133 106147Google Scholar
[22] Yoshioka K, Minam Y, Shudo K I, Dao T D, Nagao T, Kitajima M, Takeda J, Katayama I 2015 Nano Lett. 15 1036Google Scholar
[23] Lai W E, Zhu Q, Liu G, Shi G H, Gan Y C, Amini A, Cheng C 2022 J. Phys. D:Appl. Phys. 55 505103Google Scholar
[24] Zhao X L, Lou J, Xu X, Yu Y, Wang G M, Qi J H, Zeng L X, He J, Liang J G, Huang Y D, Zhang D P, Chang C 2022 Adv. Opt. Mater. 10 2102589Google Scholar
[25] Zhou Z, Chen Y L, Feng L S 2016 J. Infrared Millim. Terahertz Waves 37 953Google Scholar
[26] Ruan Z L, Pei L, Ning T G, Wang J S, Zheng J J, Li J, Xie Y H, Zhao Q, Wang J 2020 Opt. Commun. 469 125817Google Scholar
[27] Cheng L, Jin Z M, Ma Z W, Su F H, Zhao Y, Zhang Y Z, Su T Y, Sun Y, Xu X L, Meng Z, Bian Y C, Sheng Z G 2018 Adv. Opt. Mater. 6 1700877Google Scholar
[28] Qiu Q X, Huang Z M 2021 Adv. Mater. 33 2008126Google Scholar
[29] Weis P, L J, Pomar G, Hoh M, Reinhard B, Brodyansk A, Rahm M 2012 ACS Nano 6 9118Google Scholar
[30] Lai W E, Ge C D, Yuan H, Dong Q F, Yang D R, Fang Y J 2020 Adv. Mater. Technol. 5 1901090Google Scholar
[31] Wang K H, Li J S, Yao J Q 2020 J. Infrared Millim. Terahertz Waves 41 557Google Scholar
[32] Yang M S, Li T T, Yan X, Liang L J, Yao H Y, Sun Z Q, Li J, Li J, Wei D Q, Wang M, Ye Y X, Song X X, Zhang H T, Yao J Q 2022 ACS Appl. Mater. Inter. 14 2155Google Scholar
[33] Wang H X, Ling F R, Luo C Y, Wang C H, Xiao Y R, Chang Z Y, Wu X C, Wang W J, Yao J Q 2022 Opt. Mater. 127 112235Google Scholar
[34] Chen S, Fan F, Miao Y P, He X T, Zhang K L, Chang S J 2016 Nanoscale 8 4713Google Scholar
[35] Wei M Q, Zhang D N, Li Y P, Zhang L, Jin L C, Wen T L, Bai F M, Zhang H W 2019 Nanoscale Res. Lett. 14 159Google Scholar
[36] Mo C, Liu J B, Wei D S, Wu H L, Wen Q Y, Ling D X 2020 Sensors 20 2198Google Scholar
[37] Liu D D, Wang W, Xiong L Y, Ji H Y, Zhang B, Shen J L 2019 Opt. Mater. 96 109368Google Scholar
[38] Li S H, Li J S 2018 Appl. Phys. B 124 224Google Scholar
计量
- 文章访问数: 3414
- PDF下载量: 90
- 被引次数: 0