搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ar-D2O复合物在D2O弯曲振动模附近的新振转子带

李响 刘云 朱天鑫 段传喜

引用本文:
Citation:

Ar-D2O复合物在D2O弯曲振动模附近的新振转子带

李响, 刘云, 朱天鑫, 段传喜

New rovibrational subbands of Ar-D2O complex in the D2O bending mode region

Li Xiang, Liu Yun, Zhu Tian-Xin, Duan Chuan-Xi
PDF
HTML
导出引用
  • 稀有气体原子和水分子组成的范德瓦耳斯复合物是研究水和其他原子分子之间相互作用的典型模型. 本文利用中红外连续外腔量子级联激光器结合脉冲超声分子束吸收光谱技术, 在D2O弯曲振动带(v2 = 1←0)附近测量了Ar-D2O复合物4个新的振动转动子带. 基于赝双原子分子有效哈密顿量, 本文对测量到的振动转动谱线和前人报道的下能级所涉及的纯转动谱线进行了最小二乘法全局拟合, 得到了包括振动子能级能量、转动常数和离心畸变常数等在内的精确的基态和激发态分子参数. Ar-D2O的D2O弯曲振动激发的振动带头被精确确定为1177.92144 (32) cm–1, 该值比D2O单体的带头红移了约0.458 cm–1. 将从实验得到的振动子能级能量与基于四维势能面的理论计算结果进行了比较, 检验了理论计算方法的精度.
    The intermolecular interactions involving the water molecule play important roles in many fields of physics, chemistry, and biology. High-resolution spectroscopy of Van der Waals complexes formed by a rare gas atom and a water molecule can provide a wealth of information about these intermolecular interactions. The precise experimental data can be used to test the accuracies and efficiencies of various theoretical methods of constructing the intermolecular potential energy surfaces and calculating the bound states. In this work, the high-resolution infrared absorption spectrum of the Ar-D2O complex in the v2 bending region of D2O is measured by using an external cavity quantum cascade laser. A segmented rapid-scan data acquisition method is employed. The Ar-D2O complex is generated in a slit supersonic jet expansion by passing Ar gas through a vessel containing liquid D2O. Four new rovibrational subbands are assigned in the spectral range of 1150–1190 cm–1, namely $\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$, $\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{11}}} \right)$, $\Sigma \left( {{1_{01}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{10}}} \right)$ and $\Sigma \left( {{1_{01}}, {v_2} = 1} \right) $$\leftarrow \Pi \left( {{1_{01}}} \right) $. The first two subbands belong to the otho- species of Ar-D2O, while the latter two belong to the para- species. The observed rovibrational transitions together with the previously reported pure rotational spectra having the common lower vibrational sub-states are analyzed by a weighted least-squares fitting using a pseudo-diatomic effective Hamiltonian. An experimental error of 10 kHz for the far-infrared transitions and 0.001 cm–1 for the infrared transitions are set in the global fitting when using Pickett’s program SPFIT, respectively. The molecular constants including vibrational substate energy, rotational and centrifugal distortion constants, and Coriolis coupling constant, are determined accurately. The previous results for the $\Pi \left( {{1_{11}}, {v_2} = 0} \right)$ substate are found to be likely incorrect. The energy of the $\Sigma \left( {{0_{00}}, {v_2} = 1} \right)$and $\Sigma \left( {{1_{01}}, {v_2} = 1} \right)$substates are determined experimentally for the first time. The band origin of Ar-D2O in the D2O v2 bending mode region is determined to be 1177.92144(13) cm–1, which is a red shift about 0.458 cm–1 compared with the head of D2O monomer. The experimental vibrational substate energy is compared with its theoretical value based on a four-dimensional intermolecular potential energy surface which includes the normal coordinate of the D2O v2 bending mode. The experimental and theoretical results are in good agreement with each other. But the calculated energy levels are generally higher than the experimental values, so, there is still much room for improving the theoretical calculations.
      通信作者: 段传喜, duanchx@mail.ccnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11574107)资助的课题.
      Corresponding author: Duan Chuan-Xi, duanchx@mail.ccnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11574107).
    [1]

    Fraser G T, Lovas F J, Suenram R D, Matsumura K 1990 J. Mol. Spectrosc. 144 97Google Scholar

    [2]

    Zwart E, Meerts W L 1991 Chem. Phys. 151 407Google Scholar

    [3]

    Germann T C, Gutowsky H S 1993 J. Chem. Phys. 98 5235Google Scholar

    [4]

    Cohen R C, Busarow K L, Laughlin K B, Blake G A, Havenith M, Lee Y T, Saykally R J 1988 J. Chem. Phys. 89 4494Google Scholar

    [5]

    Cohen R C, Busarow K L, Lee Y T, Saykally R J 1990 J. Chem. Phys. 92 169Google Scholar

    [6]

    Cohen R C, Saykally R J 1991 J. Chem. Phys. 95 7891Google Scholar

    [7]

    Suzuki S, Bumgarner R E, Stockman P A, Green P G, Blake G A 1991 J. Chem. Phys. 94 824Google Scholar

    [8]

    Zou L Y, Widicus Weaver S L 2016 J. Mol. Spectrosc. 324 12Google Scholar

    [9]

    Weida M J, Nesbitt D J 1997 J. Chem. Phys. 106 3078Google Scholar

    [10]

    Verdes D, Linnartz H 2002 Chem. Phys. Lett. 355 538Google Scholar

    [11]

    Li S, Zheng R, Zhu Y, Duan C X 2012 J. Mol. Spectrosc. 272 27Google Scholar

    [12]

    Stewart J T, McCall B J 2012 J. Mol. Spectrosc. 282 34Google Scholar

    [13]

    Liu X, Xu Y 2014 J. Mol. Spectrosc. 301 1Google Scholar

    [14]

    Lascola R, Nesbitt D J 1991 J. Chem. Phys. 95 7917Google Scholar

    [15]

    Nesbitt D J, Lascola R 1992 J. Chem. Phys. 97 8096Google Scholar

    [16]

    Kuma S, Slipchenko M N, Momose T, Vilesov A F 2010 J. Phys. Chem. A 114 9022Google Scholar

    [17]

    Didriche K, Földes T 2013 J. Chem. Phys. 138 104307Google Scholar

    [18]

    Vanfleteren T, Földes T, Herman M 2015 Chem. Phys. Lett. 627 36Google Scholar

    [19]

    Cohen R C, Saykally R J 1993 J. Chem. Phys. 98 6007Google Scholar

    [20]

    Hutson J M 1990 J. Chem. Phys. 92 157Google Scholar

    [21]

    Bulski M, Wormer P E S, Avoird A V D 1991 J. Chem. Phys. 94 8096Google Scholar

    [22]

    Chalasiński G, Szczȩśniak M M, Scheiner S 1991 J. Chem. Phys. 94 2807Google Scholar

    [23]

    Tao F M, Klemperer W 1994 J. Chem. Phys. 101 1129Google Scholar

    [24]

    Hodges M P, Wheatley R J, Harvey A H 2002 J. Chem. Phys. 117 7169Google Scholar

    [25]

    Makarewicz J 2008 J. Chem. Phys. 129 184310Google Scholar

    [26]

    Wang S H, He S S, Dai L C, Feng E Y, Huang W Y 2015 J. Chem. Phys. 142 224307Google Scholar

    [27]

    He S S, Chen D, Li Y, Feng E Y, Huang W Y 2016 Chem. Phys. Lett. 665 71Google Scholar

    [28]

    Li S, Zheng R, Duan C X 2014 Chin. Phys. B. 23 123301Google Scholar

    [29]

    Luo W, Duan C X 2016 Chin. Phys. Lett. 33 024207Google Scholar

    [30]

    Li X, Liu Z, Duan C X 2021 J. Mol. Spectrosc. 377 111424Google Scholar

    [31]

    Li X, Pu Y Y, Liu Z, Sun Y X, Duan C X 2022 J. Mol. Spectrosc. 383 111559Google Scholar

    [32]

    Drouin B J 2017 J. Mol. Spectrosc. 340 1Google Scholar

    [33]

    王申浩 2015 硕士学位论文 (芜湖: 安徽师范大学)

    Wang S H 2015 M. S. Dessertation (Wuhu: Anhui Normal University) (in Chinese)

  • 图 1  高分辨超声射流红外吸收光谱仪实验装置示意图.

    Fig. 1.  The diagram of high-resolution supersonic jet infrared absorption spectrometer.

    图 2  Ar-D2O在D2O v2 弯曲振动带的能级示意图. 黑色箭头为本文观测跃迁谱带, 红色箭头为Li song 等观测跃迁谱带[11], 蓝色箭头为Stewart等观测跃迁谱带[12]

    Fig. 2.  Energy levels of Ar-D2O in the v2 bending region of D2O. Black arrows represent the bands detected in the present work, red arrows represent the bands[11], blue arrows represent the bands[12].

    图 3  Ar-D2O的$\Sigma \left( { {1_{01}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{01}}} \right)$谱带 (a) 实验光谱; (b) 模拟光谱. 星号所示为D2O单体线

    Fig. 3.  The spectrum for $\Sigma \left( { {1_{01}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{01}}} \right)$band of Ar-D2O: (a) Observed spectrum; (b) Simulated spectrum. Line marked with an asterisk is from the D2O monomer.

    图 4  Ar-D2O的$\Sigma \left( {{1_{01}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{10}}} \right)$谱带 (a) 实验光谱; (b) 模拟光谱. 星号所示为D2O单体线

    Fig. 4.  The spectrum for $\Sigma \left( {{1_{01}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{10}}} \right)$band of Ar-D2O: (a) Observed spectrum; (b) Simulated spectrum. Line marked with an asterisk is from the D2O monomer.

    图 5  Ar-D2O的$\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$$\Sigma( {0_{00}}, $$ {v_2} = 1 ) \leftarrow \Pi \left( {{1_{11}}} \right)$谱带 (a) 实验光谱; (b) 模拟光谱; 图中红色为$\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$跃迁谱带, 蓝色为$\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{11}}} \right)$跃迁谱带. 星号所示为D2O单体线

    Fig. 5.  The spectra for $\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$and $\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{11}}} \right)$bands of Ar-D2O: (a) Observed spectrum; (b) Simulated spectrum. The red is $\Sigma ( {0_{00}}, {v_2} = $$ 1 ) \leftarrow \Sigma \left( {{1_{11}}} \right)$band and the blue is $\Sigma ( {0_{00}}, {v_2} = 1) \leftarrow$ $\Pi \left( {{1_{11}}} \right) $band. Line marked with an asterisk is from the D2O monomer.

    表 1  Ar-D2O在远红外区域的跃迁谱线的重新拟合 (单位: MHz) a

    Table 1.  Refitting of transition frequencies of Ar-D2O in the far-infrared region (in MHz) a.

    Assignment$\Pi \left( {{1_{01}}} \right) \leftarrow \Sigma \left( {{1_{01}}} \right)$b$\Pi \left( {{1_{10}}} \right) \leftarrow \Sigma \left( {{1_{01}}} \right)$b$\Sigma \left( {{1_{11}}} \right) \leftarrow \Sigma \left( {{0_{00}}} \right)$c$\Pi \left( {{1_{11}}} \right) \leftarrow \Sigma \left( {{0_{00}}} \right)$c
    P(15)593671.56(–85)
    P(14)594125.10(89)
    P(13)594617.34(63)
    P(12)595159.22(–50)
    P(11)595761.68(–81)
    P(10)596438.86(–22)
    P(9)286151.60(1)380426.47(0)597208.18(5)
    P(8)290294.16(–2)383658.52(1)598095.30(–5)
    P(7)294584.78(0)387168.84(0)599137.41(19)
    P(6)299029.93(–1)390958.16(1)600387.39(59)529456.94(–55)
    P(5)303635.47(1)395026.72(2)601924.22(95)538944.20(–44)
    P(4)308406.24(0)399374.40(0)603862.02(–15)548068.80(41)
    P(3)313346.09(–1)404000.86(0)606374.16(–75)
    P(2)318457.69(–2)408905.45(1)609688.76(68)564472.24(–33)
    P(1)614050.94(–94)
    Q(1)329209.16(0)419686.25(0)576854.64(14)
    Q(2)329225.88(0)419967.95(2)576845.60(10)
    Q(3)329249.43(0)420389.80(–2)576832.02(8)
    Q(4)329278.03(0)420951.17(1)576813.78(2)
    Q(5)329309.36(0)421650.90(0)576790.88(1)
    Q(6)329340.61(–1)422487.66(1)576763.12(–4)
    Q(7)329368.59(0)423459.73(0)576730.48(–3)
    Q(8)329389.75(1)424565.04(0)576692.81(1)
    Q(9)329400.26(0)425801.07(0)586649.90(–1)
    Q(10)576601.72(3)
    Q(11)576548.01(–4)
    Q(12)576488.93(5)
    Q(13)576424.08(–2)
    Q(14)
    R(0)334830.48(0)425278.22(1)626461.13((64)581244.48(–50)
    R(1)340629.81(2)431284.54(–2)634322.63(–7)
    R(2)346594.45(1)437562.59(–1)642975.68(–31)587181.98(–24)
    R(3)352719.13(1)444110.37(1)652188.92(–61)589211.88(44)
    R(4)358997.30(0)450925.49(–2)661789.14(–50)590861.04(70)
    R(5)365421.36(5)458005.35(–1)671655.74(25)592246.68(33)
    R(6)371982.39(–4)681704.80(21)593449.38(99)
    R(7)378671.09(–2)691879.92(–12)594518.75(–43)
    R(8)385477.11(4)702141.48(–1)595494.34(–90)
    R(9)392389.53(–2)712459.36(2)596401.33(–39)
    R(10)722811.14(14)597256.58(–2)
    R(11)733178.48(–15)598073.14(10)
    R(12)598861.05(8)
    R(13)599628.49(43)
    R(14)600380.64(31)
    R(15)601122.42(7)
    R(16)601856.02(–96)
    R(17)602584.84(46)
    a括号中的数字为 (实验值-计算值)×102;
    b 实验观测谱线来自于文献[2];
    c 实验观测谱线来自于文献[7].
    下载: 导出CSV

    表 2  Ar-D2O在D2O单体v2弯曲振动模附近的新观测谱线及拟合偏差 (单位: cm–1)a

    Table 2.  Newly observed transition frequencies and fitting residuals of Ar-D2O in v2 bending region of D2O (in cm–1)a.

    Assignment$\Sigma \left( {{0_{00}}} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$$\Sigma \left( {{0_{00}}} \right) \leftarrow \Pi \left( {{1_{11}}} \right)$$\Sigma \left( {{1_{01}}} \right) \leftarrow \Pi \left( {{1_{10}}} \right)$$\Sigma \left( {{1_{01}}} \right) \leftarrow \Pi \left( {{1_{01}}} \right)$
    P(13)1157.9570(5)
    P(12)1157.9810(0)
    P(11)1158.0070(4)
    P(10)1158.0340(3)1164.6769(–2)
    P(9)1158.0627(0)1161.7230(–17)1164.9049(6)
    P(8)1158.0939(–3)1161.9839(2)1165.1281(–3)
    P(7)1158.1287(–2)1162.2345(–1)1165.3492(3)
    P(6)1158.1681(–1)1162.4770(–2)1165.5657(2)
    P(5)1158.2135(–3)1162.7108(–7)1165.7774(–5)
    P(4)1158.2685(2)1162.9371(–2)1165.9857(–1)
    P(3)1158.3354(–2)1163.1541(–5)1166.1901(11)
    P(2)1158.4209(–4)1163.3632(–1)1166.3873(1)
    P(1)1158.5331(–1)1166.5815(10)
    Q(1)1163.7504(2)
    Q(2)1163.7416(1)
    Q(3)1163.7289(3)
    Q(4)1158.6820(–3)1163.7117(4)
    Q(5)1158.6835(–3)1163.6902(3)
    Q(6)1158.6853(–2)1163.6645(3)1166.7712(0)
    Q(7)1158.6874(–1)1163.6348(4)1166.7728(–1)
    Q(8)1158.6899(0)1163.6005(0)1166.7752(0)
    Q(9)1158.6927(1)1163.5627(1)1166.7782(0)
    Q(10)1158.6957(1)1163.5207(–1)1166.7821(1)
    Q(11)1158.6991(1)1163.4753(1)1166.7868(0)
    Q(12)1158.7028(0)1163.4260(0)1166.7927(0)
    Q(13)1158.7070(1)1163.3730(–3)
    Q(14)1163.3171(–1)
    R(1)1157.5857(8)1167.1275(0)
    R(2)1157.6960(2)1159.3539(–3)1164.2752(0)1167.2987(–4)
    R(3)1157.7804(3)1159.6412(0)1164.4305(–5)1167.4657(2)
    R(4)1157.8455(0)1159.9463(1)1164.5782(2)1167.6264(0)
    R(5)1157.8977(2)1164.7160(0)1167.7819(–4)
    R(6)1157.9401(0)1164.8454(5)1167.9332(0)
    R(7)1157.9762(2)1164.9655(5)1168.0803(10)
    R(8)1165.0767(6)1168.2210(2)
    R(9)1165.1766(–17)1168.3581(1)
    R(10)1158.0580(0)1163.2720(2)1168.4914(3)
    R(11)1158.0795(–5)1168.6204(1)
    R(12)1158.0994(–6)1168.7455(–4)
    R(13)1168.8687(5)
    R(14)1158.1360(–1)
    R(15)1158.1528(2)
    a括号中的数字为 (实验值-计算值) ×104.
    下载: 导出CSV

    表 3  Ar-D2O各振动子能级的分子参数a

    Table 3.  Molecular constants of vibrational sub-states of Ar-D2Oa.

    ParameterGround stateD2O (v2 = 1) excited
    $\Sigma \left( {{0_{00}}} \right)$Ref. [7]This workThis work
    v/cm–11177.92144 (32)
    $B$/MHz2795.932795.86781(44)2797.88(11)
    $D$/kHz78.13777.7551(54)77.16(46)
    $H$/Hz–2.406–2.930 (19)–2.930(19) b
    $\Sigma \left( {{1_{11}}} \right)$Ref. [7]This workRef. [11]
    v/cm–1)20.669081(11)20.6690759(17)1199.84075(22)
    $B$/MHz)2808.409(30)2808.36099(61)2835.137(51)
    $D$/kHz)136.24(89)136.328(14)137.005(33)
    $H$/Hz)–23.3(69)–20.27(10)
    $L$/Hz)–0.084(18)–0.09110(29)
    $\Pi \left( {{1_{11}}} \right)$Ref. [7]This workRef. [11]
    v/cm–1)19.335135(11)19.2419471 (16)1198.12738(22)
    $B$/ MHz2793.526(22)2793.46903(54)2767.084(51)
    ${D^{\text{e}}}$/kHz13.84(74)13.308(12)20.806(33)
    ${D^{\text{f}}}$/ kHz79.06(33)78.7624(73)
    $ {H^{\text{e}}} $/Hz–1.49(58)–17.565(94)
    $ {H^{\text{f}}} $/Hz–1.7(13)–1.902(27)
    ${L^{\text{e}}}$/Hz0.140(14)0.14473(24)
    $\beta $/MHz5141.09(12)3635.3021(12)3509.22(19)
    $\Sigma \left( {{1_{01}}} \right)$Ref. [2]This workThis work
    v /cm–11177.74889(26)
    $B$/MHz2729.114(10)2729.11326(75)2734.85(98)
    $D$/kHz52.96(24)52.965(19)53.90(42)
    $H$/Hz–13.5(17)–13.40(13)–13.40(13)
    $\Pi \left( {{1_{01}}} \right)$Ref. [2]This workRef. [12]
    v/cm–110.9809467(18)10.9809468(17)1189.41215(11)
    ${B^{\text{e}}}$/MHz2815.2130(92)2815.21185(76)
    ${B^{\text{f}}}$/MHz2733.497(12)2742.423 (66)
    ${D^{\text{e}}}$/kHz110.24(18)110.229(16)
    ${D^{\text{f}}}$/kHz78.66(31)78.665(28)75.65(25)
    $ {H^{\text{e}}} $/Hz23.2(11)23.228(96)
    $ {H^{\text{f}}} $/Hz5.0(23)5.07(21)
    $\Pi \left( {{1_{10}}} \right)$Ref. [2]This workRef. [11]
    v /cm–113.9945245(20)13.9945245(19)1192.86911(21)
    ${B^{\text{e}}}$/MHz2866.584(19)2866.5846(12)2855.13(60)
    ${B^{\text{f}}}$/MHz2799.615(18)2799.6154(11)2793.37(19)
    ${D^{\text{e}}}$/kHz61.65(90)61.646(40)47.97(79)
    ${D^{\text{f}}}$/kHz63.21(68)63.211(30)35.08(20)
    $ {H^{\text{e}}} $/Hz–32(13)–31.95(37)
    $ {H^{\text{f}}} $/Hz–22.2(74)–22.22(22)
    a 括号中的数字为拟合标准偏差;
    b 固定在基态值上.
    下载: 导出CSV

    表 4  Ar-D2O实验与理论计算的振动子能级间隔比较

    Table 4.  Comparison between observed and calculated vibrational sub-state energies of Ar-D2O.

    v2=0D2O v2=1 excited
    Exp.Theo. cExp.-Theo.Exp.Theo. cExp.-Theo.
    $\Pi \left( {{1_{11}}} \right)$a19.241919.4189–0.17720.299620.4349–0.1353
    $\Sigma \left( {{1_{11}}} \right)$a20.669120.9706–0.301521.363322.0928–0.6647
    $\Pi \left( {{1_{01}}} \right)$b10.980910.97850.002411.663311.63290.0304
    $ \Pi \left( {{1_{10}}} \right) $ b13.994514.4571–0.462415.120215.4173–0.2971
    a $\Pi \left( {{1_{11}}} \right)$和$\Sigma \left( {{1_{11}}} \right)$相对于$\Sigma \left( {{0_{00}}} \right)$的能级间隔;
    b $\Pi \left( {{1_{01}}} \right)$和$\Pi \left( {{1_{10}}} \right)$相对于$\Sigma \left( {{1_{01}}} \right)$的能级间隔;
    c 理论计算值来自于文献[33] .
    下载: 导出CSV
    Baidu
  • [1]

    Fraser G T, Lovas F J, Suenram R D, Matsumura K 1990 J. Mol. Spectrosc. 144 97Google Scholar

    [2]

    Zwart E, Meerts W L 1991 Chem. Phys. 151 407Google Scholar

    [3]

    Germann T C, Gutowsky H S 1993 J. Chem. Phys. 98 5235Google Scholar

    [4]

    Cohen R C, Busarow K L, Laughlin K B, Blake G A, Havenith M, Lee Y T, Saykally R J 1988 J. Chem. Phys. 89 4494Google Scholar

    [5]

    Cohen R C, Busarow K L, Lee Y T, Saykally R J 1990 J. Chem. Phys. 92 169Google Scholar

    [6]

    Cohen R C, Saykally R J 1991 J. Chem. Phys. 95 7891Google Scholar

    [7]

    Suzuki S, Bumgarner R E, Stockman P A, Green P G, Blake G A 1991 J. Chem. Phys. 94 824Google Scholar

    [8]

    Zou L Y, Widicus Weaver S L 2016 J. Mol. Spectrosc. 324 12Google Scholar

    [9]

    Weida M J, Nesbitt D J 1997 J. Chem. Phys. 106 3078Google Scholar

    [10]

    Verdes D, Linnartz H 2002 Chem. Phys. Lett. 355 538Google Scholar

    [11]

    Li S, Zheng R, Zhu Y, Duan C X 2012 J. Mol. Spectrosc. 272 27Google Scholar

    [12]

    Stewart J T, McCall B J 2012 J. Mol. Spectrosc. 282 34Google Scholar

    [13]

    Liu X, Xu Y 2014 J. Mol. Spectrosc. 301 1Google Scholar

    [14]

    Lascola R, Nesbitt D J 1991 J. Chem. Phys. 95 7917Google Scholar

    [15]

    Nesbitt D J, Lascola R 1992 J. Chem. Phys. 97 8096Google Scholar

    [16]

    Kuma S, Slipchenko M N, Momose T, Vilesov A F 2010 J. Phys. Chem. A 114 9022Google Scholar

    [17]

    Didriche K, Földes T 2013 J. Chem. Phys. 138 104307Google Scholar

    [18]

    Vanfleteren T, Földes T, Herman M 2015 Chem. Phys. Lett. 627 36Google Scholar

    [19]

    Cohen R C, Saykally R J 1993 J. Chem. Phys. 98 6007Google Scholar

    [20]

    Hutson J M 1990 J. Chem. Phys. 92 157Google Scholar

    [21]

    Bulski M, Wormer P E S, Avoird A V D 1991 J. Chem. Phys. 94 8096Google Scholar

    [22]

    Chalasiński G, Szczȩśniak M M, Scheiner S 1991 J. Chem. Phys. 94 2807Google Scholar

    [23]

    Tao F M, Klemperer W 1994 J. Chem. Phys. 101 1129Google Scholar

    [24]

    Hodges M P, Wheatley R J, Harvey A H 2002 J. Chem. Phys. 117 7169Google Scholar

    [25]

    Makarewicz J 2008 J. Chem. Phys. 129 184310Google Scholar

    [26]

    Wang S H, He S S, Dai L C, Feng E Y, Huang W Y 2015 J. Chem. Phys. 142 224307Google Scholar

    [27]

    He S S, Chen D, Li Y, Feng E Y, Huang W Y 2016 Chem. Phys. Lett. 665 71Google Scholar

    [28]

    Li S, Zheng R, Duan C X 2014 Chin. Phys. B. 23 123301Google Scholar

    [29]

    Luo W, Duan C X 2016 Chin. Phys. Lett. 33 024207Google Scholar

    [30]

    Li X, Liu Z, Duan C X 2021 J. Mol. Spectrosc. 377 111424Google Scholar

    [31]

    Li X, Pu Y Y, Liu Z, Sun Y X, Duan C X 2022 J. Mol. Spectrosc. 383 111559Google Scholar

    [32]

    Drouin B J 2017 J. Mol. Spectrosc. 340 1Google Scholar

    [33]

    王申浩 2015 硕士学位论文 (芜湖: 安徽师范大学)

    Wang S H 2015 M. S. Dessertation (Wuhu: Anhui Normal University) (in Chinese)

  • [1] 范俊宇, 高楠, 王鹏举, 苏艳. LLM-105的分子间相互作用和热力学性质.  , 2024, 73(4): 046501. doi: 10.7498/aps.73.20231696
    [2] 王辉耀, 魏福贤, 吴雨廷, 彭腾, 刘俊宏, 汪波, 熊祖洪. 激基复合物有机发光二极管中平衡载流子增强电荷转移态的反向系间窜越过程.  , 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [3] 赵茜, 陈敬, 彭腾, 刘俊宏, 汪波, 陈晓莉, 熊祖洪. 激基复合物有机发光二极管中系间窜越和反向系间窜越过程的非单调电流依赖关系.  , 2023, 72(16): 167201. doi: 10.7498/aps.72.20230765
    [4] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟.  , 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [5] 袁洪瑞, 刘涛, 朱天鑫, 刘云, 李响, 陈杨, 段传喜. SF6分子的10.6 μm高分辨射流冷却激光吸收光谱.  , 2023, 72(6): 063301. doi: 10.7498/aps.72.20222285
    [6] 王晓璐, 令狐荣锋, 宋晓书, 吕兵, 杨向东. 氦原子与卤族氢化物分子相互作用势的研究.  , 2013, 62(16): 163101. doi: 10.7498/aps.62.163101
    [7] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究.  , 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [8] 李琳, 王暄, 孙伟峰, 雷清泉. 聚乙烯/银纳米颗粒复合物的分子动力学模拟研究.  , 2013, 62(10): 106201. doi: 10.7498/aps.62.106201
    [9] 赵艳红, 刘海风, 张其黎. 高温高压下爆轰产物中不同种分子间的相互作用.  , 2012, 61(23): 230509. doi: 10.7498/aps.61.230509
    [10] 刘天元, 孙成林, 里佐威, 周密. Raman光谱方法研究三氯甲烷与苯分子间的 C/H相互作用.  , 2012, 61(10): 107801. doi: 10.7498/aps.61.107801
    [11] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数.  , 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [12] 赵艳红, 刘海风, 张弓木, 张广财. 高温高压下爆轰产物分子间相互作用的研究.  , 2011, 60(12): 123401. doi: 10.7498/aps.60.123401
    [13] 余春日, 黄时中, 史守华, 程新路, 杨向东. Ne-HBr复合物CCSD(T)势能面对转动非弹性分波截面的影响.  , 2007, 56(10): 5739-5745. doi: 10.7498/aps.56.5739
    [14] 史 伟, 房昌水, 徐志凌, 潘奇伟, 赵 显, 顾庆天, 许 东, 余金中. 聚合物薄膜中生色团分子间的相互作用对其宏观二阶非线性的影响.  , 2000, 49(5): 904-910. doi: 10.7498/aps.49.904
    [15] 冯少新, 金庆华, 郭振亚, 李宝会, 丁大同. 碱土氟化物中离子间相互作用势经验参数的确定.  , 1998, 47(11): 1811-1817. doi: 10.7498/aps.47.1811
    [16] 颜家壬, 梅玉平. 光纤孤子间的相互作用.  , 1996, 45(7): 1122-1129. doi: 10.7498/aps.45.1122
    [17] 戴长建. 自电离序列间的相互作用.  , 1994, 43(3): 369-379. doi: 10.7498/aps.43.369
    [18] 郭长志, 黄永箴. 近单模半导体激光器中模式间相互作用对光谱线宽的影响.  , 1990, 39(7): 59-65. doi: 10.7498/aps.39.59-2
    [19] 于宝善, 胡代林, 苏滨丽. 分子间相互作用对联合散射谱带强度的影响.  , 1966, 22(6): 714-718. doi: 10.7498/aps.22.714
    [20] 江安才. 直线式不对称三原分子之振动转动光谱及其势能函数.  , 1944, 5(1): 49-63. doi: 10.7498/aps.5.49
计量
  • 文章访问数:  3091
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-02
  • 修回日期:  2022-09-22
  • 上网日期:  2022-10-18
  • 刊出日期:  2023-01-05

/

返回文章
返回
Baidu
map