搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用重力场模型二阶位系数及新近岁差率约束火星内核大小及密度组成

钟振 文麒麟 梁金福

引用本文:
Citation:

应用重力场模型二阶位系数及新近岁差率约束火星内核大小及密度组成

钟振, 文麒麟, 梁金福

Constraining the size and density composition of the Martian core by using second-order potential coefficient and recent precession rate of gravity field model

Zhong Zhen, Wen Qi-Lin, Liang Jin-Fu
PDF
HTML
导出引用
  • 针对当前InSight数据无法检测火星固态内核是否存在的问题, 提出利用火星平均密度和平均惯性矩因子估算火星固态内核的大小及其密度组成. 根据火星高阶重力场模型JGMRO120f和GMM3-120以及最新火星岁差率, 推导了观测数据下的火星平均密度和平均惯性矩因子; 参考火星内部结构的4层模型以及不同自由参数(壳层密度、幔层密度、外核密度、内核大小和内核密度), 求解了火星平均密度和平均惯性矩因子的模型值. 利用观测值与模型值最小残差平方和作为约束条件, 大批量统计结果表明: 1)两个重力场模型求解的自由参数具有相同的分布特征, 自由参数的最优值基本一致; 2)火星壳层密度、幔层密度和外核密度接近其他研究结果, 表明统计结果有一定的参考价值; 3)火星可能存在840 km左右的固态内核, 其密度约为6950 kg⋅m–3. 内核密度大小表明火星内核不由纯铁物质组成, 该结果与火星核富集轻元素物质的近期研究一致, 计算结果具有一定的参考价值. 由于反演结果的非唯一性, 未来随着InSight火星星震数据处理技术的提高, 有望进一步约束火星内核的大小及其组成.
    It is still difficult to detect the existence of Martian solid inner core merely based on Mars seismic InSight data. To deal with this problem, our study intends to use the mean density and mean moment of inertia factor to constrain the size and density of Martian solid inner core. Using the Mars high-degree gravity field models: JGMRO120f and GMM3-120, and considering the recent precession rate, we obtain the mean density and mean moment of inertia factor, which are treated as the observed values. Referring to the 4-layers internal structure model of Mars, and considering the 4 parameters, i.e. crustal density, mantle density, density of outer core, size and density of inner core, we calculate the modeled values of the Martian mean density and the mean moment of inertia factor. From the minimum residuals between observed and modeled values of mean density as well as that of mean moment of inertia factor, it is found that the two gravity field models have the same result of distribution of free parameters. As to the optimized values of the free parameters, the two gravity field models even have the same results. Furthermore, the optimized crustal density, mantel density and density of outer core approach other studies, indicating the dependence of our results. Finally, our result demonstrates that Mars likely has a solid inner core with a size close to 840 km, and the density of inner core is nearly 6950 kg⋅m–3. Our result implies that Mars has an inner core not fully composed of pure iron, which is consistent with the recent study that Mars requires a substantial complement of light elements in Martian core. However, it is further needed to constrain the size and composition of Martian inner core due to the non-uniqueness of inversion results. With the improvement of processing technology on the InSight data, it can be further constrained for the size and composition of Martian inner core.
      通信作者: 钟振, zzhong@gznu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 41864001, 42030110)资助的课题.
      Corresponding author: Zhong Zhen, zzhong@gznu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41864001, 42030110).
    [1]

    Mittelholz A, Johnson C L, Feinberg J M, Langlais B, Phillips R J 2020 Sci. Adv. 6 eaba0513Google Scholar

    [2]

    Stevenson D J 2001 Natrue 412 214Google Scholar

    [3]

    Taylor G J 2013 Geochemistry 73 401Google Scholar

    [4]

    Plesa A C, Tosi N, Grott M, Breuer D 2015 J. Geophys. Res. Planet 120 995Google Scholar

    [5]

    Khan A, Liebske C, Rozel A, Rivoldini A, Nimmo F, Connolly J A D, Plesa A C, Giardini D A 2018 J. Geophys. Res. Planet 123 575Google Scholar

    [6]

    Bagheri A, Khan A, Al‐Attar D, Crawford O, Giardini D 2019 J. Geophys. Res. Planet 124 2703Google Scholar

    [7]

    Genova A, Goossens S, Lemoine F G, Mazarico E, Neumann G A, Smith D E, Zuber M T 2016 Icarus 272 228Google Scholar

    [8]

    Konopliv A S, Park R S, Folkner W M 2016 Icarus 274 253Google Scholar

    [9]

    Rivoldini A, Van Hoolst T, Verhoeven O, Mocquet A, Dehant V 2011 Icarus 213 451Google Scholar

    [10]

    Konopliv A S, Park R S, Rivoldini A, Baland R M, Maistre S L, Hoolst T V, Yseboodt M, Dehant V 2020 Geophys Res. Lett. 47 e2020GL090568Google Scholar

    [11]

    Stähler S C, Khan A, Banerdt W B, et al. 2021 Science 373 443Google Scholar

    [12]

    Sohl F, Schubert G, Spohn T 2005 J. Geophys. Res. Planet 110 E12008Google Scholar

    [13]

    Kahan D S, Folkner W M, Buccino D R, Dehant V, Maistre S L, Rivoldini A, Hoolst T V, Yseboodt M, Marty J C 2021 Planet. Space Sci. 199 105208Google Scholar

    [14]

    Konopliv A S, Asmar S W, Folkner W M, Karatekin Ö, Nunes D C, Smrekar S E, Yoder C F, Zuber M T 2011 Icarus 211 401Google Scholar

    [15]

    Ding M, Lin J, Gu C, Huang Q H, Zuber M T 2019 J. Geophys. Res. Planet 124 3095Google Scholar

    [16]

    Zhong Z, Yan J, Liu X, Chen S, Fan G, Yang C, Pang L, Barriot J P 2022 Icarus 374 114741Google Scholar

    [17]

    Planetary Data System https://pds-geosciences.wustl.edu/default.htm [2020.10.23]

    [18]

    Gerald S 2015 Treatise on Geophysics (Oxford: Elsevier) pp153–193

    [19]

    Goossen S, Sabaka T J, Genova A, Mazarico E, Nicholas J B, Neumann G A 2017 Geophys Res. Lett. 44 7686Google Scholar

    [20]

    Tiesinga E, Mohr P J, Newell D B, Taylor B N 2021 J. Phys. Chem. Ref. Data 50 033105Google Scholar

    [21]

    Zuber M T, Smith D E 1997 J. Geophys. Res. Planet 102 28673Google Scholar

    [22]

    Baland R M, Yseboodt M, Maistre S L, Rivoldini A, Hoolst T V, Dehant V 2020 Celest. Mech. Dyn. Astr. 132 1Google Scholar

    [23]

    Knapmeyer-Endrun B, Panning M P, Bissig F, et al. 2021 Science 373 438Google Scholar

    [24]

    Yan J, Xu L, Li F, Matsumoto K, Rodriguez J A P, Miyamoto H, Dohm J M 2015 Adv. Space Res. 55 1721Google Scholar

    [25]

    钟振, 张腾, 段炼, 李毅, 朱化强 2021 武汉大学学报-信息科学版 46 238Google Scholar

    Zhong Z, Zhang T, Duan L, Li Y, Zhu H Q 2021 Geomat. Inform. Sci. Wuhan Univ. 46 238Google Scholar

    [26]

    Steenstra E S, Westrenen W V 2018 Icarus 315 69Google Scholar

    [27]

    Semprich J, Filiberto J 2020 Meteorit. Planet. Sci. 55 1600Google Scholar

    [28]

    McGetchin T R, Smith J R 1978 Icarus 34 512Google Scholar

    [29]

    Khan A, Sossi P A, Liebske C, Rivoldini A, Giardini D 2022 Earth Planet. Sc. Lett. 578 117330Google Scholar

    [30]

    Wieczorek M A, Zuber M T 2004 J. Geophys. Res. Planet 109 E01009Google Scholar

    [31]

    Wieczorek M A, Broquet A, McLennan S M, et al. 2022 J. Geophys. Res. Planet 127 e2022JE007298Google Scholar

  • 图 1  火星内部圈层结构

    Fig. 1.  Sketch of Martian internal structure with various layers.

    图 2  由重力场模型JGMRO120f推算的质量、平均惯性矩因子和二阶位系数反演的相关参数

    Fig. 2.  Parameters estimated from the calculated Martian mass, mean moment of inertia factor and gravitation coefficient of degree 2 of the gravity field model JGMRO120f.

    图 3  由重力场模型GMM3-120推算的质量、平均惯性矩因子和二阶位系数反演的相关参数

    Fig. 3.  Parameters estimated from the calculated Martian mass, mean moment of inertia factor and gravitation coefficient of degree 2 of the gravity field model GMM3-120.

    表 1  参数取值

    Table 1.  Values of the parameters used in calculation.

    序号参数取值及范围
    1JGMRO120f模型的火星质量
    M/kg与二阶位系数
    M = 6.417120511584593×1023, C20 = –0.8750219819894×10–3,
    C22 = –0.8463283575906×10–4, S22 = 0.4893975901192×10–4
    2GMM3-120模型的火星质量
    M/kg与二阶位系数
    M = 6.417120090587431×1023, C20 = –0.87502113235452894×10–3,
    C22 = –0.84635903869414677×10–4, S22 = 0.48934625860229178×10–4
    3平均半径R/km3389.5
    4平均密度$\bar{\rho }$/(kg⋅m–3)3934.093
    5InSight数据的火星最新岁差率
    $ \dot{\psi } $/(ms·a–1) [13]
    –7605
    6平均惯性矩因子${I}/({M{R}^{2} })$0.3637801121 (JGMRO120f), 0.3637797586 (GMM3-120)
    下载: 导出CSV

    表 2  火星内部结构固定参数与待求参数

    Table 2.  Fixed and free parameters of the Martian inner structure.

    参数取值或取值范围
    火星壳厚度 bc/km[15]50.0
    火星幔半径 rm = R bc, rm/km3339.5
    火星外核半径 rco/km[11]1830.0
    火星内核半径 rci/km[50, 1600]
    火星壳密度 ρc/(kg⋅m–3)[2500, 3300]
    火星幔密度 ρm/(kg⋅m–3)[3000, 3600]
    火星外核密度 ρco/(kg⋅m–3)[3400, 7000]
    火星内核密度 ρci/(kg⋅m–3)[4000, 7500]
    下载: 导出CSV

    表 3  目标函数f对不同待求参数的敏感度S

    Table 3.  Sensitivity of various parameters S to the objective function f

    敏感度SJGMRO120fGMM3-120
    S(f, ρci)–11.1404–11.1404
    S(f, rci)–2.6496–2.6496
    S(f, ρm)–305.8501–305.8642
    S(f, ρco)–96.8772–96.8782
    S(f, ρc)–14.7235–14.7245
    下载: 导出CSV
    Baidu
  • [1]

    Mittelholz A, Johnson C L, Feinberg J M, Langlais B, Phillips R J 2020 Sci. Adv. 6 eaba0513Google Scholar

    [2]

    Stevenson D J 2001 Natrue 412 214Google Scholar

    [3]

    Taylor G J 2013 Geochemistry 73 401Google Scholar

    [4]

    Plesa A C, Tosi N, Grott M, Breuer D 2015 J. Geophys. Res. Planet 120 995Google Scholar

    [5]

    Khan A, Liebske C, Rozel A, Rivoldini A, Nimmo F, Connolly J A D, Plesa A C, Giardini D A 2018 J. Geophys. Res. Planet 123 575Google Scholar

    [6]

    Bagheri A, Khan A, Al‐Attar D, Crawford O, Giardini D 2019 J. Geophys. Res. Planet 124 2703Google Scholar

    [7]

    Genova A, Goossens S, Lemoine F G, Mazarico E, Neumann G A, Smith D E, Zuber M T 2016 Icarus 272 228Google Scholar

    [8]

    Konopliv A S, Park R S, Folkner W M 2016 Icarus 274 253Google Scholar

    [9]

    Rivoldini A, Van Hoolst T, Verhoeven O, Mocquet A, Dehant V 2011 Icarus 213 451Google Scholar

    [10]

    Konopliv A S, Park R S, Rivoldini A, Baland R M, Maistre S L, Hoolst T V, Yseboodt M, Dehant V 2020 Geophys Res. Lett. 47 e2020GL090568Google Scholar

    [11]

    Stähler S C, Khan A, Banerdt W B, et al. 2021 Science 373 443Google Scholar

    [12]

    Sohl F, Schubert G, Spohn T 2005 J. Geophys. Res. Planet 110 E12008Google Scholar

    [13]

    Kahan D S, Folkner W M, Buccino D R, Dehant V, Maistre S L, Rivoldini A, Hoolst T V, Yseboodt M, Marty J C 2021 Planet. Space Sci. 199 105208Google Scholar

    [14]

    Konopliv A S, Asmar S W, Folkner W M, Karatekin Ö, Nunes D C, Smrekar S E, Yoder C F, Zuber M T 2011 Icarus 211 401Google Scholar

    [15]

    Ding M, Lin J, Gu C, Huang Q H, Zuber M T 2019 J. Geophys. Res. Planet 124 3095Google Scholar

    [16]

    Zhong Z, Yan J, Liu X, Chen S, Fan G, Yang C, Pang L, Barriot J P 2022 Icarus 374 114741Google Scholar

    [17]

    Planetary Data System https://pds-geosciences.wustl.edu/default.htm [2020.10.23]

    [18]

    Gerald S 2015 Treatise on Geophysics (Oxford: Elsevier) pp153–193

    [19]

    Goossen S, Sabaka T J, Genova A, Mazarico E, Nicholas J B, Neumann G A 2017 Geophys Res. Lett. 44 7686Google Scholar

    [20]

    Tiesinga E, Mohr P J, Newell D B, Taylor B N 2021 J. Phys. Chem. Ref. Data 50 033105Google Scholar

    [21]

    Zuber M T, Smith D E 1997 J. Geophys. Res. Planet 102 28673Google Scholar

    [22]

    Baland R M, Yseboodt M, Maistre S L, Rivoldini A, Hoolst T V, Dehant V 2020 Celest. Mech. Dyn. Astr. 132 1Google Scholar

    [23]

    Knapmeyer-Endrun B, Panning M P, Bissig F, et al. 2021 Science 373 438Google Scholar

    [24]

    Yan J, Xu L, Li F, Matsumoto K, Rodriguez J A P, Miyamoto H, Dohm J M 2015 Adv. Space Res. 55 1721Google Scholar

    [25]

    钟振, 张腾, 段炼, 李毅, 朱化强 2021 武汉大学学报-信息科学版 46 238Google Scholar

    Zhong Z, Zhang T, Duan L, Li Y, Zhu H Q 2021 Geomat. Inform. Sci. Wuhan Univ. 46 238Google Scholar

    [26]

    Steenstra E S, Westrenen W V 2018 Icarus 315 69Google Scholar

    [27]

    Semprich J, Filiberto J 2020 Meteorit. Planet. Sci. 55 1600Google Scholar

    [28]

    McGetchin T R, Smith J R 1978 Icarus 34 512Google Scholar

    [29]

    Khan A, Sossi P A, Liebske C, Rivoldini A, Giardini D 2022 Earth Planet. Sc. Lett. 578 117330Google Scholar

    [30]

    Wieczorek M A, Zuber M T 2004 J. Geophys. Res. Planet 109 E01009Google Scholar

    [31]

    Wieczorek M A, Broquet A, McLennan S M, et al. 2022 J. Geophys. Res. Planet 127 e2022JE007298Google Scholar

  • [1] 文麒麟, 钟振. 应用模拟退火算法估算月核大小及其密度组成.  , 2023, 72(8): 089601. doi: 10.7498/aps.72.20222282
    [2] 孙冠文, 崔寒茵, 李超, 林伟军. 火星大气频散声速剖面建模方法及其对声传播路径的影响.  , 2022, 71(24): 244304. doi: 10.7498/aps.71.20221531
    [3] 张泰恒, 王绪成, 张远涛. 火星大气条件下基态CO2放电简化集合.  , 2021, 70(21): 215201. doi: 10.7498/aps.70.20210664
    [4] 杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生. 同轴枪脉冲放电等离子体输运过程中密度变化的实验研究.  , 2017, 66(5): 055203. doi: 10.7498/aps.66.055203
    [5] 吴夏, 魏征. 基于内核构建的Cu-Au-Pd团簇稳定结构优化.  , 2017, 66(15): 150202. doi: 10.7498/aps.66.150202
    [6] 彭博栋, 宋岩, 盛亮, 王培伟, 黑东炜, 赵军, 李阳, 张美, 李奎念. 辐射致折射率变化用于MeV级脉冲辐射探测的初步研究.  , 2016, 65(15): 157801. doi: 10.7498/aps.65.157801
    [7] 王松, 武占成, 唐小金, 孙永卫, 易忠. 聚酰亚胺电导率随温度和电场强度的变化规律.  , 2016, 65(2): 025201. doi: 10.7498/aps.65.025201
    [8] 苏涛, 卢震宇, 周杰, 侯威, 李悦, 涂钢. 全球水汽再循环率的空间分布及其季节变化特征.  , 2014, 63(9): 099201. doi: 10.7498/aps.63.099201
    [9] 刘宾礼, 唐勇, 罗毅飞, 刘德志, 王瑞田, 汪波. 基于电压变化率的IGBT结温预测模型研究.  , 2014, 63(17): 177201. doi: 10.7498/aps.63.177201
    [10] 杨波, 梅冬成. 非高斯噪声对惯性棘轮中粒子负迁移率的影响.  , 2013, 62(11): 110502. doi: 10.7498/aps.62.110502
    [11] 缪庆元, 崔俊, 胡蕾蕾, 何健, 何平安, 黄德修. 载流子导引的折射率变化偏振相关性研究.  , 2012, 61(20): 207803. doi: 10.7498/aps.61.207803
    [12] 成海英, 何文平, 何涛, 吴琼. 基于概率密度分布型变化的突变检测新途径.  , 2012, 61(3): 039201. doi: 10.7498/aps.61.039201
    [13] 黄喜, 张新亮, 董建绩, 黄德修. 半导体光放大器超快折射率变化动态特性的研究.  , 2009, 58(5): 3185-3192. doi: 10.7498/aps.58.3185
    [14] 孙贤明, 申晋, 魏佩瑜. 含有密集随机分布内核的椭球粒子光散射特性研究.  , 2009, 58(9): 6222-6226. doi: 10.7498/aps.58.6222
    [15] 范鲜红, 李 敏, 尼启良, 刘世界, 王晓光, 陈 波. Mo/Si多层膜在质子辐照下反射率的变化.  , 2008, 57(10): 6494-6499. doi: 10.7498/aps.57.6494
    [16] 郭永峰, 徐 伟, 李东喜. 色噪声驱动的双奇异随机系统随时间演化的熵变化率上界.  , 2007, 56(10): 5613-5617. doi: 10.7498/aps.56.5613
    [17] 张 红, 程新路, 杨向东, 谢方军, 张继彦, 杨国洪. 金等离子体平均离化度随电子温度变化关系的研究.  , 2003, 52(12): 3098-3101. doi: 10.7498/aps.52.3098
    [18] 谢晓明, 蒋亦民, 王焕友, 曹晓平, 刘 佑. 颗粒堆密度变化对堆底压力分布的影响.  , 2003, 52(9): 2194-2199. doi: 10.7498/aps.52.2194
    [19] 程开甲. 从截面上晶粒大小的面密度分布计算体密度分布.  , 1957, 13(1): 58-68. doi: 10.7498/aps.13.58
    [20] 杨立铭. 原子核内核子轨道角動量分布与核子密度.  , 1953, 9(4): 302-316. doi: 10.7498/aps.9.302
计量
  • 文章访问数:  4095
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-10-27
  • 上网日期:  2022-11-05
  • 刊出日期:  2023-01-20

/

返回文章
返回
Baidu
map