搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆柱绕流尾迹转捩电磁力控制研究

黄亚冬 王智河 周本谋

引用本文:
Citation:

圆柱绕流尾迹转捩电磁力控制研究

黄亚冬, 王智河, 周本谋

Transition control of cylinder wake via Lorentz force

Huang Ya-Dong, Wang Zhi-He, Zhou Ben-Mou
PDF
HTML
导出引用
  • 圆柱绕流是典型的振荡器流动, 扰动在空间固定位置随时间增长, 诱导尾迹转捩, 从而增大柱体振动与流场噪声. 本文通过在圆柱迎流面、背流面以及全圆柱表面放置电磁激活板产生流向电磁力, 调控二维基态流, 降低尾迹中扰动增长率, 实现转捩模态改变. Floquet稳定性分析发现, 迎流面控制中转捩模态A和B的增长率变化较小, 而背流面和全圆柱控制中两种模态的增长率均随电磁力控制参数的增大而减小. 分析椭圆不稳定和双曲不稳定诱导的无黏增长率发现, 迎流面控制中尾迹高无黏增长率与无控制时相似, 而背流面和全圆柱控制中均随电磁力作用参数的增大而减小. 三维直接数值模拟发现圆柱尾迹三维形态在背流面控制和全圆柱控制中由模态B转变为模态A, 与Floquet稳定性分析结果吻合. 此外, 当圆柱尾迹形态发生变化后, 背流面控制和全圆柱控制下圆柱所受的阻力分别降低了15.2%和14.4%.
    The flow around a cylinder is a typical flow acting as the oscillator, and the perturbations can grow with time at a fixed position. This phenomenon can induce the laminar-turbulent transition in the wake, thus increasing the vibrations of the cylinder as well as the noise in the flow system. There exist three control strategies, i.e. the streamwise Lorentz force from the electromagnetic actuator set on the windward surface named windward control, the leeward surface named leeward control, and the whole surface of cylinder named global control, which are adopted to modify the two-dimensional base flow, thereby reducing the growth rates of perturbations in the wake and changing the transition mode. According to the Floquet stability analysis, it is found that the growth rates of the transition modes A and B present small changes in the windward control, while the growth rates of the two modes decrease with the increase of the control number in the other two control cases. Comparing the inviscid growth rates induced by the elliptic instability and the hyperbolic instability with each other, it is observed that the high inviscid growth rate in the windward control can be similar to those without control, while the inviscid growth rates can decrease with the increase of control number in the other two control cases. Three-dimensional direct numerical simulations are performed to validate the control effects. The results shows that the three-dimensional shape of the wake is changed from mode B to mode A when the actuator is set on the leeward surface or the whole surface of the cylinder. This is consistent with the result from the Floquet stability analysis. In addition, the drag of the cylinder reduces 15.2% for the leeward control and 14.4% for the the global control.
      通信作者: 周本谋, bmzhou@njust.edu.cn
    • 基金项目: KJW创新项目(批准号: NLG1221991210829)资助的课题.
      Corresponding author: Zhou Ben-Mou, bmzhou@njust.edu.cn
    • Funds: Project supported by the Innovation Project of KJW (Grant No. NLG1221991210829).
    [1]

    Williamson C H K 1996 Annu. Rev. Fluid. Mech. 28 477Google Scholar

    [2]

    Jackson C P 1987 J. Fluid Mech. 182 23Google Scholar

    [3]

    Barkley D, Henderson R D 1996 J. Fluid. Mech. 322 215Google Scholar

    [4]

    Jiang H Y, Cheng L 2020 Phys. Fluids 32 014103Google Scholar

    [5]

    McClure J, Pavan C, Yarusevych S 2019 Phys. Rev. Fluids 4 124702Google Scholar

    [6]

    Xu C, Mao Y J, Hu Z W 2019 Aerosp. Sci. Technol. 88 233Google Scholar

    [7]

    Gao D L, Huang Y W, Chen W L, Chen G B, Li H 2019 Phys. Fluids 31 057105Google Scholar

    [8]

    Del Guercio G, Cossu C, Pujals G 2014 J. Fluid Mech. 752 572Google Scholar

    [9]

    Xu F, Chen W L, Bai W F, Xiao Y Q, Qu J P 2017 Comput. Fluids 145 52Google Scholar

    [10]

    Mao X R, Sherwin S 2015 J. Fluid Mech. 775 241Google Scholar

    [11]

    陈蒋力, 陈少强, 任峰, 胡海豹 2022 71 084701Google Scholar

    Chen J L, Chen S Q, Ren F, Hu H B 2022 Acta Phys. Sin. 71 084701Google Scholar

    [12]

    Li J C, Zhang M Q 2022 J. Fluid Mech. 932 A44Google Scholar

    [13]

    Marquet O, Sipp D, Jacquin L 2008 J. Fluid Mech. 615 221Google Scholar

    [14]

    Khodkar M A, Taira K 2020 J. Fluid Mech. 904 R1Google Scholar

    [15]

    Albrecht T, Stiller J, Metzkes H, Weier T, Gerbeth G 2013 Eur. Phys. J. Spec. Top. 220 275Google Scholar

    [16]

    Kim S, Lee C M 2001 Exp. Fluids 28 252Google Scholar

    [17]

    尹纪富, 尤云祥, 李巍, 胡天群 2014 63 044701Google Scholar

    Yin J F, You Y X, Li W, Hu T Q 2014 Acta Phys. Sin. 63 044701Google Scholar

    [18]

    Zhang H, Fan B C, Chen Z H 2010 Eur. J. Mech. B-Fluids 29 53Google Scholar

    [19]

    Zhang H, Fan B C, Chen Z H, Li H Z 2014 J. Fluids Struct. 48 62Google Scholar

    [20]

    Zhang H, Liu M K, Han Y, Gui M Y, Li J, Chen Z H 2017 Comput. Fluids 159 112Google Scholar

    [21]

    刘宗凯, 薄昱明, 王军, 崔珂 2017 66 084704Google Scholar

    Liu Z K, Bo Y M, Wang J, Cui K 2017 Acta Phys. Sin. 66 084704Google Scholar

    [22]

    Huang Y D, Zhou B M, Tang Z L 2017 Appl. Math. Mech. Engl. Ed. 38 439Google Scholar

    [23]

    Berger T W, Kim J, Lee C, Lim J 2000 Phys. Fluids 12 631Google Scholar

    [24]

    Du Y Q, Karniadakis G E 2000 Science 288 1230Google Scholar

    [25]

    Blackburn H M, Lee D, Albrecht T, Singh J 2019 Comput. Phys. Commun. 245 106804Google Scholar

    [26]

    Karniadakis G E, Israeli M, Orszag S A 1991 J. Comput. Phys. 97 414Google Scholar

    [27]

    Barkley D, Blackburn H M, Sherwin S J 2008 Int. J. Numer. Meth. Fluids 57 1435Google Scholar

    [28]

    Williamson C H K 1989 J Fluid Mech. 206 579Google Scholar

    [29]

    Hammache M, Gharib M 1991 J. Fluid Mech. 232 567Google Scholar

    [30]

    Thompsom M C, Leweke T, Williamson C H K 2001 J. Fluid Struct. 15 607Google Scholar

    [31]

    Jeong J, Hussain F 1995 J. Fluid Mech. 285 69Google Scholar

  • 图 1  控制模型

    Fig. 1.  Control model.

    图 2  计算区域网格划分

    Fig. 2.  Mesh of the calculation domain.

    图 3  随雷诺数变化的圆柱尾迹Strouhal

    Fig. 3.  The Strouhal number of the cylinder wake varying with the Reynolds number.

    图 4  随电磁力作用参数变化的圆柱尾迹Strouhal

    Fig. 4.  The Strouhal number of the cylinder wake varying with the control number.

    图 5  不同控制参数下随扰动波数变化的模态B增长率 (a)迎流面控制; (b)背流面控制; (c)全圆柱控制

    Fig. 5.  The growth rates of Mode B varying with the spanwise wavenumber for different control numbers: (a) Windward control; (b) leeward control; (c) global control.

    图 6  不同控制参数下随扰动波数变化的模态A增长率 (a)迎流面控制; (b)背流面控制; (c)全圆柱控制

    Fig. 6.  The growth rates of Mode A varying with the spanwise wavenumber for different control numbers: (a) Windward control; (b) leeward control; (c) global control.

    图 7  不同控制参数下最不稳定转捩模态的增长率 (a)模态A; (b)模态B

    Fig. 7.  The growth rate of the most unstable transition mode for different control numbers: (a) Mode A; (b) Mode B.

    图 8  不同控制参数下的最不稳定转捩模态(云图为涡量) (a)无控制; (b)迎流面控制; (c)背流面控制; (d)全圆柱控制

    Fig. 8.  The unstable transition mode(the contour is the vorticity): (a) No control; (b) windward control; (c) leeward control; (d) global control.

    图 9  无控制中椭圆不稳定和双曲不稳定诱导的时变无黏增长率 (a)椭圆不稳定诱导; (b)双曲不稳定诱导

    Fig. 9.  Variations of the inviscid growth rates induced by the elliptic instability and hyperbolic instability: (a) Induced by the elliptic instability; (b) induced by the hyperbolic instability.

    图 10  无控制中椭圆不稳定和双曲不稳定诱导的具有最大无黏增长率的区域(云图为无黏增长率) (a)${t_1}$时刻椭圆不稳定诱导; (b)$ {t_2} $时刻双曲不稳定诱导

    Fig. 10.  Regions with the maximum inviscid growth rates induced by the elliptic instability and hyperbolic instability: (a) Induced by the elliptic instability at ${t_1}$; (b) induced by the hyperbolic instability at ${t_2}$

    图 11  全圆柱控制中椭圆不稳定和双曲不稳定诱导的时变无黏增长率 (a) $N = 0.6$; (b) $N = 0.8$; (c) $N = $$ 1.0$; (d) $N = 1.2$

    Fig. 11.  Variations of the inviscid growth rates induced by the elliptic instability and hyperbolic instability with the time: (a) $N = 0.6$; (b) $N = 0.8$; (c) $N = 1.0$; (d) $N = $$ 1.2$.

    图 12  随电磁力作用参数变化的平均无黏增长率 (a)椭圆不稳定诱导; (b)双曲不稳定诱导

    Fig. 12.  Variations of the mean inviscid growth rates with the control numbers: (a) Induced by the elliptic instability; (b) induced by the hyperbolic instability

    图 13  随时间变化的主Fourier模态能量

    Fig. 13.  The energy of the primary Fourier mode varying with the time.

    图 14  不同控制工况下的圆柱三维尾迹结构

    Fig. 14.  The three-dimensional structures of the cylinder wake for different control cases.

    图 15  模态B转捩形成的流场中流向不同位置展向速度脉动

    Fig. 15.  Distributions of the spanwise velocity pulsations along the wall-normalwise direction at different streamwise locations in the wake evolving from Mode B.

    图 16  模态A转捩形成的流场中流向不同位置展向速度脉动

    Fig. 16.  Distributions of the spanwise velocity pulsations along the wall-normalwise direction at different streamwise locations in the wake evolving from Mode A.

    表 1  不同插值阶数下的计算收敛性

    Table 1.  Convergence for different interpolation orders.

    $\mathcal{K}$${\bar C_{\text{d}}}$ (%相对差值)${\sigma _{\text{r}}}$ (%相对差值)
    41.38497(–0.03)0.14538( 0.12)
    61.38463(–0.01)0.14549( 0.04)
    81.38440( 0.01)0.14555( 0.00)
    101.38450(—)0.14555(—)
    下载: 导出CSV

    表 2  不同控制参数下圆柱所受平均阻力

    Table 2.  The average drag for different control numbers.

    无电磁力控制迎流面控制背流面控制全圆柱控制
    N = 0.6N = 1.0N = 0.6N = 1.0 N = 0.6N = 1.0
    0.65910.65880.65940.61530.55900.61880.5642
    下载: 导出CSV
    Baidu
  • [1]

    Williamson C H K 1996 Annu. Rev. Fluid. Mech. 28 477Google Scholar

    [2]

    Jackson C P 1987 J. Fluid Mech. 182 23Google Scholar

    [3]

    Barkley D, Henderson R D 1996 J. Fluid. Mech. 322 215Google Scholar

    [4]

    Jiang H Y, Cheng L 2020 Phys. Fluids 32 014103Google Scholar

    [5]

    McClure J, Pavan C, Yarusevych S 2019 Phys. Rev. Fluids 4 124702Google Scholar

    [6]

    Xu C, Mao Y J, Hu Z W 2019 Aerosp. Sci. Technol. 88 233Google Scholar

    [7]

    Gao D L, Huang Y W, Chen W L, Chen G B, Li H 2019 Phys. Fluids 31 057105Google Scholar

    [8]

    Del Guercio G, Cossu C, Pujals G 2014 J. Fluid Mech. 752 572Google Scholar

    [9]

    Xu F, Chen W L, Bai W F, Xiao Y Q, Qu J P 2017 Comput. Fluids 145 52Google Scholar

    [10]

    Mao X R, Sherwin S 2015 J. Fluid Mech. 775 241Google Scholar

    [11]

    陈蒋力, 陈少强, 任峰, 胡海豹 2022 71 084701Google Scholar

    Chen J L, Chen S Q, Ren F, Hu H B 2022 Acta Phys. Sin. 71 084701Google Scholar

    [12]

    Li J C, Zhang M Q 2022 J. Fluid Mech. 932 A44Google Scholar

    [13]

    Marquet O, Sipp D, Jacquin L 2008 J. Fluid Mech. 615 221Google Scholar

    [14]

    Khodkar M A, Taira K 2020 J. Fluid Mech. 904 R1Google Scholar

    [15]

    Albrecht T, Stiller J, Metzkes H, Weier T, Gerbeth G 2013 Eur. Phys. J. Spec. Top. 220 275Google Scholar

    [16]

    Kim S, Lee C M 2001 Exp. Fluids 28 252Google Scholar

    [17]

    尹纪富, 尤云祥, 李巍, 胡天群 2014 63 044701Google Scholar

    Yin J F, You Y X, Li W, Hu T Q 2014 Acta Phys. Sin. 63 044701Google Scholar

    [18]

    Zhang H, Fan B C, Chen Z H 2010 Eur. J. Mech. B-Fluids 29 53Google Scholar

    [19]

    Zhang H, Fan B C, Chen Z H, Li H Z 2014 J. Fluids Struct. 48 62Google Scholar

    [20]

    Zhang H, Liu M K, Han Y, Gui M Y, Li J, Chen Z H 2017 Comput. Fluids 159 112Google Scholar

    [21]

    刘宗凯, 薄昱明, 王军, 崔珂 2017 66 084704Google Scholar

    Liu Z K, Bo Y M, Wang J, Cui K 2017 Acta Phys. Sin. 66 084704Google Scholar

    [22]

    Huang Y D, Zhou B M, Tang Z L 2017 Appl. Math. Mech. Engl. Ed. 38 439Google Scholar

    [23]

    Berger T W, Kim J, Lee C, Lim J 2000 Phys. Fluids 12 631Google Scholar

    [24]

    Du Y Q, Karniadakis G E 2000 Science 288 1230Google Scholar

    [25]

    Blackburn H M, Lee D, Albrecht T, Singh J 2019 Comput. Phys. Commun. 245 106804Google Scholar

    [26]

    Karniadakis G E, Israeli M, Orszag S A 1991 J. Comput. Phys. 97 414Google Scholar

    [27]

    Barkley D, Blackburn H M, Sherwin S J 2008 Int. J. Numer. Meth. Fluids 57 1435Google Scholar

    [28]

    Williamson C H K 1989 J Fluid Mech. 206 579Google Scholar

    [29]

    Hammache M, Gharib M 1991 J. Fluid Mech. 232 567Google Scholar

    [30]

    Thompsom M C, Leweke T, Williamson C H K 2001 J. Fluid Struct. 15 607Google Scholar

    [31]

    Jeong J, Hussain F 1995 J. Fluid Mech. 285 69Google Scholar

  • [1] 刘勇, 涂国华, 向星皓, 李晓虎, 郭启龙, 万兵兵. 横向矩形微槽抑制高超声速第二模态扰动波的参数化研究.  , 2022, 71(19): 194701. doi: 10.7498/aps.71.20220851
    [2] 石启陈, 赵志杰, 张焕好, 陈志华, 郑纯. 流向磁场抑制Kelvin-Helmholtz不稳定性机理研究.  , 2021, 70(15): 154702. doi: 10.7498/aps.70.20202024
    [3] 刘小林, 易仕和, 牛海波, 陆小革. 激光聚焦扰动作用下高超声速边界层稳定性实验研究.  , 2018, 67(21): 214701. doi: 10.7498/aps.67.20181192
    [4] 马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁. 高速模型尾迹流场及其电磁散射特性相似性实验研究.  , 2017, 66(10): 102401. doi: 10.7498/aps.66.102401
    [5] 刘宗凯, 薄煜明, 王军, 崔珂. 电磁力滤波与快速反射镜光学补偿在潜航器光轴稳定控制中的应用.  , 2017, 66(8): 084704. doi: 10.7498/aps.66.084704
    [6] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性.  , 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [7] 朱霖河, 赵洪涌. 时滞惯性神经网络的稳定性和分岔控制.  , 2014, 63(9): 090203. doi: 10.7498/aps.63.090203
    [8] 尹纪富, 尤云祥, 李巍, 胡天群. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析.  , 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [9] 胡建兵, 赵灵冬. 分数阶系统稳定性理论与控制研究.  , 2013, 62(24): 240504. doi: 10.7498/aps.62.240504
    [10] 胡乃红, 周宇飞, 陈军宁. 单相SPWM逆变器快标分叉控制及其稳定性分析.  , 2012, 61(13): 130504. doi: 10.7498/aps.61.130504
    [11] 陈林, 唐登斌, Chaoqun Liu. 转捩边界层中流向条纹的新特性.  , 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [12] 梅栋杰, 范宝春, 陈耀慧, 叶经方. 槽道湍流展向振荡电磁力控制的实验研究.  , 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [13] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 高斯变迹布拉格光纤光栅中的调制不稳定性.  , 2007, 56(9): 5281-5286. doi: 10.7498/aps.56.5281
    [14] 魏新华, 周国成, 曹晋滨, 李柳元. 无碰撞电流片低频电磁模不稳定性:MHD模型.  , 2005, 54(7): 3228-3235. doi: 10.7498/aps.54.3228
    [15] 李 伟, 徐 伟, 赵俊锋, 靳艳飞. 耦合Duffing-van der Pol系统的随机稳定性及控制.  , 2005, 54(12): 5559-5565. doi: 10.7498/aps.54.5559
    [16] 马伟增, 季诚昌, 李建国. 直流磁场控制电磁悬浮熔炼旋转稳定性的理论分析.  , 2002, 51(10): 2233-2238. doi: 10.7498/aps.51.2233
    [17] 李存标. 关于转捩边界层中流向涡的产生.  , 2001, 50(1): 182-184. doi: 10.7498/aps.50.182
    [18] 海文华, 段宜武, 朱熙文, 施磊, 罗学立, 何春山. 控制离子云混沌运动中的不稳定性.  , 1997, 46(11): 2117-2123. doi: 10.7498/aps.46.2117
    [19] 张承福, 汪诗金. 圆柱形等离子体中漂移波的稳定性.  , 1984, 33(10): 1350-1358. doi: 10.7498/aps.33.1350
    [20] 柯孚久, 陈雁萍, 周玉美, 吴京生. 电磁迴旋不稳定性的准线性理论.  , 1981, 30(11): 1438-1447. doi: 10.7498/aps.30.1438
计量
  • 文章访问数:  3324
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-08
  • 修回日期:  2022-08-15
  • 上网日期:  2022-11-08
  • 刊出日期:  2022-11-20

/

返回文章
返回
Baidu
map