-
杆箍缩二极管的模拟工作是指导杆箍缩二极管性能改进的重要工具,为提升模拟的准确性, 本文对阳极等离子体产生机制开展研究. 采用particle in cell和蒙特卡洛的模拟计算方法, 在杆箍缩二极管阳极离子发射模型的基础上, 根据空间电荷双极性流特性, 着重研究等离子体电子的作用, 提出阳极等离子体模型. 本文以目前的实验结果为基础, 以数值计算为主要手段对新模型进行了详细的分析, 并在杆箍缩二极管电流、杆箍缩二极管阴阳极间隙电场分布、电子能谱、电子入射阳极杆的运动状态、X射线剂量及成像焦斑计算等方面与阳极离子发射模型进行详细对比. 研究表明, 新模型计算结果更接近实验测量结果, 描述杆箍缩二极管物理过程不能忽视阳极等离子体电子的作用.
Flash radiography technology is commonly used in detonation physics experiments and nondestructive testing, in which an X-ray diode is an integral part of flash radiography equipment. Its function is to convert the electric energy stored in the front power supply into X-rays through the bremsstrahlung effect. Rod-pinch diode is one of the most commonly used X-ray diodes in 1–4 MV. It has the characteristics of a small focal spot and high imaging resolution. The anode ions of the rod pinch diode come from the anode plasma, and the anode plasma electrons are generated at the same time as the anode plasma ions. Before the establishment of the bipolar current between the anode and cathode of the rod pinch diode, these electrons are mainly absorbed by the anode; however, after the formation of the bipolar current, due to the zero electric field on the anode surface, plasma electrons will accumulate near the anode surface and will not be absorbed. Given the theoretical derivation of bipolar current in the gap between anode and cathode of rod pinch diode in the early stage, it is necessary to study the electrons in anode plasma. The simulation of the rod-pinch diode is an essential tool for improving the performance of the rod-pinch diode. To improve simulation accuracy, it is necessary to study the emission mechanism of cathode and anode particles and continuously optimize the simulation model. In this paper, PIC and Monte Carlo simulation are used. An anode plasma model is proposed in this work based on the anode ion emission model of the rod-pinch diode and the characteristics of space charge bipolar flow, that is, when the anode plasma environment is fully established, the electric field on the anode surface is zero, and ions and electrons will accumulate on the anode surface. The new model is analyzed in detail and compared with the anode ion emission model in rod-pinch diode current, electromagnetic field distribution between cathode and anode, electron energy spectrum, motion state of electron incident anode rod, dose, and spot size. The results show that the calculation results from the new model are closer to the experimental results, which shows that the role of electrons accumulated near the anode in the plasma cannot be ignored in the numerical calculation of the rod-pinch diode anode rod surface plasma. -
Keywords:
- rod-pinch diode /
- flash X-ray radiography /
- Monte Carlo Simulation /
- particle in cell simulation
[1] 刘军 2008 博士学位论文 (北京: 中国工程物理研究院)
Liu J 2008 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)
[2] 张寿云 1985 爆炸与冲击 5 89
Zhang S Y 1985 Explos. Shock Waves 5 89
[3] Duff R E, Knight H T 1956 J. Chem. Phys. 25 1301
[4] 耿力东, 何泱, 袁建强, 王敏华, 曹龙博, 谢卫平 2018 强激光与粒子束 30 115003Google Scholar
Geng L D, He Y, Yuan J Q, Wang M H, Cao L B, Xie W P 2018 High Power Laser Part. Beams 30 115003Google Scholar
[5] Commisso R J, Cooperstein G, Hinshelwood D D, Mosher D, Young F C 2002 IEEE Trans. Plasma Sci. 30 338Google Scholar
[6] 陈林, 姜巍, 谢卫平, 邓建军 2007 强激光与粒子束 19 1747
Chen L, Jiang W, Xie W P, Deng J J 2007 High Power Laser Part. Beams 19 1747
[7] 高屹, 邱爱慈, 吕敏, 杨海亮, 张众, 张鹏飞 2010 核技术 33 5
Gao Y, Qiu A C, Lü M, Yang H L, Zhang Z, Zhang P F 2010 Nucl. Tech. 33 5
[8] Hinshelwood D D, Cooperstein G, Mosher D, Ottinger P F, Schumer J W, Stephanakis S J, Swanekamp S B, Weber B V, Young F C 2002 Am. Inst. Phys. Conf. Proc. 650 203
[9] 孙剑锋, 孙江, 邱爱慈, 张鹏飞, 杨海亮, 李静雅, 尹佳辉, 胡杨, 金亮 2014 强激光与粒子束 26 276Google Scholar
Sun J F, Sun J, Qiu A C, Zhang P F, Yang H L, Li J Y, Yin J H, Hu Y, Jin L 2014 High Power Laser Part. Beams 26 276Google Scholar
[10] 孙江, 孙剑锋, 杨海亮, 张鹏飞, 苏兆锋, 周军 2013 现代应用物理 1 18Google Scholar
Sun J, Sun J F, Yang H L, Zhang P F, Su Z F, Zhou J 2013 Mod. Appl. Phys. 1 18Google Scholar
[11] Weber B V, Allen R, Comrmsso R J, Cooperstein G, Hinshelwood D D, Mosher D, Murphy D P, Ottinger PF, Phipps D G, Schumer J W 2007 IEEE 34th International Conference on Plasma Science (ICOPS) Albuquerque, NM, USA, June 17–22, 2007 p440
[12] Sorokin S A 2010 Tech. Phys. Lett. 36 379Google Scholar
[13] Weber B V, Cooperstein G, Hinshelwood D D, Mosher D, Schumer J W, Stephanakis S J, Strasburg S B, Swanekamp S B, Young F C 2002 AIP Conf. Proc. 650 191Google Scholar
[14] 徐启福 2012 博士学位论文 (长沙: 国防科学技术大学)
Xu Q F 2012 Ph. D. Dissertation (Chang Sha: National University of Defense Science and technology) (in Chinese)
[15] Poukey J W 1975 Appl. Phys. Lett. 26 145Google Scholar
[16] 耿力东, 谢卫平, 袁建强, 王敏华, 曹龙博, 付佳斌, 赵小明, 何泱 2018 强激光与粒子束 30 085003Google Scholar
Geng L D, Xie W P, Yuan J Q, Wang M H, Cao L B, Fu J B, Zhao X M, He Y 2018 High Power Laser Part. Beams 30 085003Google Scholar
[17] Miller C L, Welch D R, Rose D V, Oliver B V 2010 IEEE Trans. Plasma Sci. 38 2507Google Scholar
[18] 王宇, 李洪涛, 王文斗, 邓建军, 刘金峰, 马成刚 2015 强激光与粒子束 27 095005Google Scholar
Wang Y, Li H T, Wang W D, Deng J J, Liu J F, Ma C G 2015 High Power Laser Part. Beams 27 095005Google Scholar
[19] 耿力东, 谢卫平, 袁建强, 王敏华, 曹龙博, 张思群, 赵小明, 何泱 2018 原子能科学技术 52 1512Google Scholar
Geng L D, Xie W P, Yuan J Q, Wang M H, Cao L B, Zhang S Q, Zhao X M, He Y 2018 At. Energy Sci. Technol. 52 1512Google Scholar
[20] Xie W, Xia M, Guo F, Geng L, Zhao Y, Xu L, Feng S, Zhou L, Wei B, He A, Yuan J, Chen L, Li H, Han W, Jiang J, Li F, Wang Z, Li Y, Kang J, Zhang Y, Wu W, Wang M, Zou W 2021 Phys. Rev. Accel. Beams 24 110401Google Scholar
[21] Zhou J, Liu D, Chen L, Li Z 2009 IEEE Trans. Plasma Sci. 37 2002Google Scholar
[22] Perl J, Shin J, Schümann J, Faddegon B, Paganetti H 2012 Med. Phys. 39 6818Google Scholar
[23] Allison J, Amako K, Apostolakis J, Araujo H, Dubois P A, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar
[24] Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, Beck B R, Bogdanov A G, Brandt D, Brown J M C, Burkhardt H, Canal P, Cano-Ott D, Chauvie S, Cho K, Cirrone G A P, Cooperman G, Cortés-Giraldo M A, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira V D, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser K L, Grichine V M, Guatelli S, Guèye P, Gumplinger P, Howard A S, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko V N, Jones F W, Jun S Y, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee S B, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia M G, Pokorski W, Quesada J M, Raine M, Reis M A, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin J I, Strakovsky I I, Taborda A, Tanaka S, Tomé B, Toshito T, Tran H N, Truscott P R, Urban L, Uzhinsky V, Verbeke J M, Verderi M, Wendt B L, Wenzel H, Wright D H, Wright D M, Yamashita T, Yarba J, Yoshida H 2016 Nucl. Instrum. Methods Phys. Res. , Sect. A 835 186Google Scholar
[25] Agostinelli S, Allison J, Amako K, Apostolakis J, Zschiesche D 2003 Nucl. Instrum. Methods Phys. Res. , Sect. A 506 250Google Scholar
[26] 李成刚 2015 博士学位论文 (北京: 中国工程物理研究院)
Li C G 2015 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)
-
图 4 4—54发实验在50 ns各物理量空间分布图 (a) A模型电子空间分布; (b) B模型电子空间分布; (c) A模型Bphi空间分布; (d) B模型Bphi空间分布; (e) A模型Er空间分布; (f) B模型Er空间分布; (g) A模型Ez空间分布; (h) B模型Ez空间分布(图中白色部分为超量程值)
Fig. 4. 4–54 Experiments in 50 ns each physical quantity spatial distribution diagram: (a) A model electronic spatial distribution; (b) B model electronic spatial distribution; (c) A model Bphi spatial distribution; (d) B model Bphi spatial distribution; (E) A model Er spatial distribution; (f) B model Er spatial distribution; (g) A model EZ spatial distribution; (H) B model EZ spatial distribution (The white part in the Figure is the over range value).
表 1 杆箍缩二极管1—4 MV实验结果
Table 1. Results of Rod-pinch diode 1–4 MV experiment.
发次/No. 电压/MV 电流/kA 剂量/rad rC/mm L/mm 1—6 1.42 57.00 1.23 6.00 10.00 4—54 2.06 58.80 3.60 7.00 10.00 4—62 3.13 73.70 9.50 9.00 10.00 4—81 4.10 98.50 16.60 9.00 16.00 表 2 杆箍缩二极管电流实验与模拟结果
Table 2. Experimental and simulation results of rod-pinch diode current.
发次/No. 实验测量电流/kA A模型模拟电流/kA A模型电流百分差/% B模型模拟电流/kA B模型电流百分差/% 1—6 57.00 36.30 36.32 54.80 3.86 4—54 58.80 47.80 18.71 63.89 8.66 4—62 73.70 63.50 13.84 83.60 13.43 4—81 98.50 84.00 14.72 104.60 6.19 表 3 杆箍缩二极管1 m处剂量实验与模拟结果
Table 3. Experimental and simulation results of dose at 1 m of rod pinch diode.
发次/No. 实验测量剂量/Rad A模型模拟剂量/Rad A模型剂量百分差/% B模型模拟剂量/Rad B模型剂量百分差/% 1—6 1.23 0.86 29.83 1.25 1.63 4—54 3.60 3.36 6.67 3.76 4.44 4—62 9.50 5.41 43.09 8.73 8.11 4—81 16.60 13.12 20.96 17.18 3.49 表 4 焦斑计算结果
Table 4. Focal spot calculation results.
模型 FWHM成像屏/mm FWHM光源/mm A模型 4.66 ± 0.38 2.33 ± 0.20 B模型 2.40 ± 0.16 1.20 ± 0.08 -
[1] 刘军 2008 博士学位论文 (北京: 中国工程物理研究院)
Liu J 2008 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)
[2] 张寿云 1985 爆炸与冲击 5 89
Zhang S Y 1985 Explos. Shock Waves 5 89
[3] Duff R E, Knight H T 1956 J. Chem. Phys. 25 1301
[4] 耿力东, 何泱, 袁建强, 王敏华, 曹龙博, 谢卫平 2018 强激光与粒子束 30 115003Google Scholar
Geng L D, He Y, Yuan J Q, Wang M H, Cao L B, Xie W P 2018 High Power Laser Part. Beams 30 115003Google Scholar
[5] Commisso R J, Cooperstein G, Hinshelwood D D, Mosher D, Young F C 2002 IEEE Trans. Plasma Sci. 30 338Google Scholar
[6] 陈林, 姜巍, 谢卫平, 邓建军 2007 强激光与粒子束 19 1747
Chen L, Jiang W, Xie W P, Deng J J 2007 High Power Laser Part. Beams 19 1747
[7] 高屹, 邱爱慈, 吕敏, 杨海亮, 张众, 张鹏飞 2010 核技术 33 5
Gao Y, Qiu A C, Lü M, Yang H L, Zhang Z, Zhang P F 2010 Nucl. Tech. 33 5
[8] Hinshelwood D D, Cooperstein G, Mosher D, Ottinger P F, Schumer J W, Stephanakis S J, Swanekamp S B, Weber B V, Young F C 2002 Am. Inst. Phys. Conf. Proc. 650 203
[9] 孙剑锋, 孙江, 邱爱慈, 张鹏飞, 杨海亮, 李静雅, 尹佳辉, 胡杨, 金亮 2014 强激光与粒子束 26 276Google Scholar
Sun J F, Sun J, Qiu A C, Zhang P F, Yang H L, Li J Y, Yin J H, Hu Y, Jin L 2014 High Power Laser Part. Beams 26 276Google Scholar
[10] 孙江, 孙剑锋, 杨海亮, 张鹏飞, 苏兆锋, 周军 2013 现代应用物理 1 18Google Scholar
Sun J, Sun J F, Yang H L, Zhang P F, Su Z F, Zhou J 2013 Mod. Appl. Phys. 1 18Google Scholar
[11] Weber B V, Allen R, Comrmsso R J, Cooperstein G, Hinshelwood D D, Mosher D, Murphy D P, Ottinger PF, Phipps D G, Schumer J W 2007 IEEE 34th International Conference on Plasma Science (ICOPS) Albuquerque, NM, USA, June 17–22, 2007 p440
[12] Sorokin S A 2010 Tech. Phys. Lett. 36 379Google Scholar
[13] Weber B V, Cooperstein G, Hinshelwood D D, Mosher D, Schumer J W, Stephanakis S J, Strasburg S B, Swanekamp S B, Young F C 2002 AIP Conf. Proc. 650 191Google Scholar
[14] 徐启福 2012 博士学位论文 (长沙: 国防科学技术大学)
Xu Q F 2012 Ph. D. Dissertation (Chang Sha: National University of Defense Science and technology) (in Chinese)
[15] Poukey J W 1975 Appl. Phys. Lett. 26 145Google Scholar
[16] 耿力东, 谢卫平, 袁建强, 王敏华, 曹龙博, 付佳斌, 赵小明, 何泱 2018 强激光与粒子束 30 085003Google Scholar
Geng L D, Xie W P, Yuan J Q, Wang M H, Cao L B, Fu J B, Zhao X M, He Y 2018 High Power Laser Part. Beams 30 085003Google Scholar
[17] Miller C L, Welch D R, Rose D V, Oliver B V 2010 IEEE Trans. Plasma Sci. 38 2507Google Scholar
[18] 王宇, 李洪涛, 王文斗, 邓建军, 刘金峰, 马成刚 2015 强激光与粒子束 27 095005Google Scholar
Wang Y, Li H T, Wang W D, Deng J J, Liu J F, Ma C G 2015 High Power Laser Part. Beams 27 095005Google Scholar
[19] 耿力东, 谢卫平, 袁建强, 王敏华, 曹龙博, 张思群, 赵小明, 何泱 2018 原子能科学技术 52 1512Google Scholar
Geng L D, Xie W P, Yuan J Q, Wang M H, Cao L B, Zhang S Q, Zhao X M, He Y 2018 At. Energy Sci. Technol. 52 1512Google Scholar
[20] Xie W, Xia M, Guo F, Geng L, Zhao Y, Xu L, Feng S, Zhou L, Wei B, He A, Yuan J, Chen L, Li H, Han W, Jiang J, Li F, Wang Z, Li Y, Kang J, Zhang Y, Wu W, Wang M, Zou W 2021 Phys. Rev. Accel. Beams 24 110401Google Scholar
[21] Zhou J, Liu D, Chen L, Li Z 2009 IEEE Trans. Plasma Sci. 37 2002Google Scholar
[22] Perl J, Shin J, Schümann J, Faddegon B, Paganetti H 2012 Med. Phys. 39 6818Google Scholar
[23] Allison J, Amako K, Apostolakis J, Araujo H, Dubois P A, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar
[24] Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, Beck B R, Bogdanov A G, Brandt D, Brown J M C, Burkhardt H, Canal P, Cano-Ott D, Chauvie S, Cho K, Cirrone G A P, Cooperman G, Cortés-Giraldo M A, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira V D, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser K L, Grichine V M, Guatelli S, Guèye P, Gumplinger P, Howard A S, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko V N, Jones F W, Jun S Y, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee S B, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia M G, Pokorski W, Quesada J M, Raine M, Reis M A, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin J I, Strakovsky I I, Taborda A, Tanaka S, Tomé B, Toshito T, Tran H N, Truscott P R, Urban L, Uzhinsky V, Verbeke J M, Verderi M, Wendt B L, Wenzel H, Wright D H, Wright D M, Yamashita T, Yarba J, Yoshida H 2016 Nucl. Instrum. Methods Phys. Res. , Sect. A 835 186Google Scholar
[25] Agostinelli S, Allison J, Amako K, Apostolakis J, Zschiesche D 2003 Nucl. Instrum. Methods Phys. Res. , Sect. A 506 250Google Scholar
[26] 李成刚 2015 博士学位论文 (北京: 中国工程物理研究院)
Li C G 2015 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)
计量
- 文章访问数: 3289
- PDF下载量: 63
- 被引次数: 0