搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NO紫外宽带吸收光谱的非线性响应及实验

熊枫 彭志敏 丁艳军 杜艳君

引用本文:
Citation:

NO紫外宽带吸收光谱的非线性响应及实验

熊枫, 彭志敏, 丁艳军, 杜艳君

Experimental study of nonlinear phenomenon of NO ultraviolet broadband absorption spectroscopy

Xiong Feng, Peng Zhi-Min, Ding Yan-Jun, Du Yan-Jun
PDF
HTML
导出引用
  • 紫外宽带吸收光谱(UV-BAS)作为一种气体定量检测技术, 常用于检测NO等气态污染物, 然而光谱仪对真实光谱的展宽作用会导致吸收率随光学厚度的变化偏离线性关系. 本文针对NO吸收光谱的非线性效应进行了理论与实验研究, 通过建立NO吸收率峰值非线性数据库, 提供了一种基于插值多项式的NO浓度测量方法. 首先理论推导出吸收率随光学厚度的非线性变化关系. 通过对单谱线进行仿真分析, 探究仪器展宽给非线性变化关系带来的影响; 然后定量计算不同仪器展宽下γ (0, 0)谱带吸收率峰值随光学厚度的变化关系, 并给出多项式模型的非线性表达式并建立系数数据库, 同时对同一展宽不同NO振动谱带的非线性问题进行了比较与分析. 最后, 通过采用不同展宽光谱仪实验测量NO吸收光谱并对上述理论研究结果进行验证, 吸收率峰值实验结果与理论计算的相对误差小于4%, 与数据库插值多项式的误差小于8%, 证明了理论计算的准确性与数据库的可靠性.
    Ultraviolet broadband absorption spectroscopy (UV-BAS) has been widely used to measure the concentration of gas pollutant, such as NO. However, the nonlinear dependence of the absorbance on the optical thickness (XL) caused by the broadening effect of instrument function is observed. In this paper, the nonlinear behavior of NO absorbance is investigated both theoretically and experimentally, and a database using a polynomial to describe the nonlinearity is established to present a simple method of measuring NO concentration. First, the nonlinear relationship between absorbance and XL is deduced. Second, the nonlinearity of an isolated spectral line is simulated, and the dependence of nonlinear behavior on instrument width is investigated. Third, the nonlinerities of peak absorbance in γ (0, 0) band with different instrumental widths are calculated, the nonlinear expression is given in a polynomial form, and the corresponding coefficient database is established. In addition, the nonlinearities in different vibration bands with the same instrumental width are compared with each other. Finally, two spectrometers are used to measure NO absorption spectra in different instrumental widths in order to validate the above-mentioned results of theoretical analysis. The relative error between the measured peak absorbance and theoretical calculation is less than 4%, and that between experimental results and the interpolation polynomial results is less than 8%. The experimental results demonstrate the accuracy of theoretical calculation and the reliability of database.
      通信作者: 杜艳君, YanjunDu@ncepu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFB20060002)和华能集团总部科技项目基础能源科技研究专项 (批准号: HNKJ20-H50)资助的课题.
      Corresponding author: Du Yan-Jun, YanjunDu@ncepu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFB20060002) and the Huaneng Group Headquarters Science and Technology Project Basic Energy Science and Technology Research Special, China (Grant No. HNKJ20-H50).
    [1]

    Yan J, Wang G, Yang P, Li D, Bian J 2022 Sci. Total Environ. 817 152776Google Scholar

    [2]

    Liu Y, Tang G, Liu B, et al. 2022 Atmos. Environ. 275 119018Google Scholar

    [3]

    Breeze P 2017 Electricity Generation and the Environment (Academic Press) pp33–47

    [4]

    Abdul-Wahab S A, Azzi M, Johnson G M, et al. 2003 Process Saf. Environ. 81 363Google Scholar

    [5]

    Salome C M, Brown N J, Marks G B, et al. 1996 Eur. Respir. J. 9 910Google Scholar

    [6]

    Li H, Liu W, Kan R 2019 Rev. Sci. Instrum. 90 46103Google Scholar

    [7]

    Fereja T H, Hymete A, Gunasekaran T 2013 ISRN Spectroscopy 230858Google Scholar

    [8]

    Steffenson D M, Stedman D H 1974 Anal. Chem. 46 1704Google Scholar

    [9]

    Ridley B A, Grahek F E 1990 J. Atmos. Ocean. Tech. 7 307Google Scholar

    [10]

    蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏 2014 63 083301Google Scholar

    Lan L J, Ding Y J, Jia J W, Du Y J, Peng Z M, 2014 Acta Phys. Sin. 63 083301Google Scholar

    [11]

    Kormann R, Fischer H, Gurk C, et al. 2002 Spectrochim Acta A Mol. Biomol. Spectrosc. 58 2489Google Scholar

    [12]

    Cui X, Dong F, Zhang Z, Sun P, Xia H, Fertein E, Chen W 2018 Atmos. Environ. 189 125Google Scholar

    [13]

    Chao X, Jeffries J B, Hanson R K 2012 Appl. Phys. B 106 987Google Scholar

    [14]

    Magne L, Pasquiers S 2005 C. R. Phys. 6 908Google Scholar

    [15]

    Liao W, Hecobian A, Mastromarino J, Tan D 2006 Atmos. Environ. 40 17Google Scholar

    [16]

    Miyazaki K, Matsumoto J, Kato S, Kajii Y 2008 Atmos. Environ. 42 7812Google Scholar

    [17]

    崔执凤 陈 东 凤尔银 季学韩 陆同兴 李学初 2000 49 2151Google Scholar

    Cui Z F, Chen D, Feng E Y, Ji X H, Lu T X, Li X C 2000 Acta Phys. Sin. 49 2151Google Scholar

    [18]

    Peng B, Zhou Y, Liu G, He Y, Gao C, Guo Y 2020 Spectrochi. Acta. A 233 118169Google Scholar

    [19]

    Wang L, Zhang Y, Zhou X, Qin F, Zhang Z 2017 Sens. Actuators B Chem. 241 146Google Scholar

    [20]

    Peng B, Gao C, Zhou Y, Guo Y 2020 Sens. Actuators B Chem. 312 127988Google Scholar

    [21]

    Yang X, Peng Z, Ding Y, Du Y 2021 Fuel 288 119666Google Scholar

    [22]

    Zhang Y G, Wang H S, Somesfalean G, Wang Z Y, Lou X T, Wu S H, Zhang Z G, Qin Y K 2010 Atmos. Environ. 44 4266Google Scholar

    [23]

    Li Y, Zhang X, Li X, et al. 2018 Appl. Spectrosc. 72 1244Google Scholar

    [24]

    Sepman A, Gullberg M, Wiinikka H 2020 Appl. Phys. B 126 100Google Scholar

    [25]

    段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清 2021 70 010702Google Scholar

    Duan J, Tang K, Qin M, Wang D, Wang M D, Fang W, Meng F H, Xie P H, Liu J G, Liu W Q 2021 Acta Phys. Sin. 70 010702Google Scholar

    [26]

    Buijs K, Maurice M J 1969 Anal. Chim. Acta 47 469Google Scholar

    [27]

    Donovan R J, Hussain D, Kirsch L J 1970 Trans. Faraday. Soc. 66 2551Google Scholar

    [28]

    Mellqvist J, Rosén A 1996 J. Quant. Spectrosc. Radiat. Transf 56 209Google Scholar

    [29]

    Trad H, Higelin P, Djebaı̈li-Chaumeix N, Mounaim-Rousselle C 2005 J. Quant. Spectrosc. Radiat. Transf. 90 275Google Scholar

    [30]

    Wong A, Yurchenko S N, Bernath P, et al. 2017 Mon. Not. R. Astron. Soc. 470 882Google Scholar

    [31]

    Luque J, Crosley D R LIFBASE: Database and Spectral Simulation Program (Version 1.5) 1999 SRI International Report MP 99 009

  • 图 1  UV-BAS测量系统示意图

    Fig. 1.  Schematic of the experimental setup for UV-BAS measurements.

    图 2  单谱线峰值随光学厚度变化的非线性行为

    Fig. 2.  Nonlinearity of single line peak with optical thickness

    图 3  单根谱线非线性度及其导数

    Fig. 3.  Nonlinearity of single line and its derivative.

    图 4  γ (0, 0)带系吸收光谱 (a) 真实光谱; (b) 不同仪器展宽下的测量光谱

    Fig. 4.  Absorption spectra of γ (0, 0): (a) True spectrum; (b) detect spectra in different instrument widths.

    图 5  不同仪器展宽下γ (0, 0)带系吸收率峰值非线性行为

    Fig. 5.  Nonlinearity of the peak absorbance in γ (0, 0) in different instrument widths.

    图 6  A1, |A2|与非线性度随仪器展宽的变化规律

    Fig. 6.  Dependence of A1, |A2|, and the relative nonlinearity on the instrumental width.

    图 7  NO不同振动谱带紫外吸收光谱

    Fig. 7.  NO absorbption spectra in different vibration bands.

    图 8  (a) 不同谱带吸收率峰值非线性行为; (b) 等最大线强度各谱带峰值非线性行为

    Fig. 8.  (a) Nonlinearity of peak absorbance in different bands; (b) nonlinearity of peak absorbance with the same maximum line strength in different bands.

    图 9  (a) 不同谱带吸收比例积分面积非线性行为; (b) 等最大线强度各谱带面积非线性行为

    Fig. 9.  (a) Nonlinearity of absorption fraction the integral area in different bands; (b) nonlinearity of the integral area with the same maximum line strength in different bands.

    图 10  UV-BAS测量光谱强度与吸收率 (a), (b) BAS光谱强度; (c), (d) BAS测量吸收率

    Fig. 10.  Spectrum intensities and absorbances measured by BAS: (a), (b) BAS spectrum intensity; (c), (d) BAS measures absorption

    图 11  吸收率峰值随光学厚度变化规律

    Fig. 11.  Dependence of the peak absorbance on optical thickness.

    图 12  数据库系数插值多项式与实验结果对比

    Fig. 12.  Comparison between interpolation polynomial and experimental result.

    图 13  吸收分数积分面积随光学厚度变化规律

    Fig. 13.  Dependence of integral area of absorption fraction on optical thickness.

    表 1  NO非线性行为的多项式系数

    Table 1.  Polynomial coefficient for NO nonlinearity

    Δνin/nmA1/10–3A2/10–5A3/10–8
    0.0116.572–2.1201.499
    0.058.779–1.0410.846
    0.107.379–0.8900.689
    0.504.037–0.6200.493
    1.002.810–0.4290.341
    5.000.720–0.1300.107
    下载: 导出CSV

    表 A1  不同仪器展宽Δνin下多项式系数

    Table A1.  Polynomial coefficients in different Δνin.

    Δνin/nmA1/10–3A2/10–5A3/10–8
    0.01016.572–2.1201.499
    0.01513.854–2.1701.728
    0.02011.977–1.9121.646
    0.02510.828–1.6241.460
    0.03010.087–1.3741.208
    0.0359.619–1.2291.046
    0.0409.281–1.1430.952
    0.0459.010–1.0840.891
    0.0508.779–1.0410.846
    0.0558.576–1.0080.812
    0.0608.395–0.9820.785
    0.0658.231–0.9620.763
    0.0708.081–0.9450.745
    0.0757.943–0.9320.731
    0.0807.815–0.9210.719
    0.0857.696–0.9110.709
    0.0907.584–0.9030.702
    0.0957.479–0.8960.695
    0.107.379–0.8900.689
    0.156.596–0.8490.653
    0.206.038–0.8180.631
    0.255.577–0.7860.609
    0.305.178–0.7530.587
    0.354.829–0.7180.564
    0.404.526–0.6830.540
    0.454.264–0.6500.516
    0.504.037–0.6200.493
    0.553.842–0.5910.472
    0.603.673–0.5660.452
    0.653.525–0.5420.433
    0.703.395–0.5210.416
    0.753.278–0.5010.400
    0.803.171–0.4840.386
    0.853.073–0.4680.373
    0.902.981–0.4540.362
    0.952.893–0.4410.351
    1.02.810–0.4290.341
    1.22.510–0.3890.309
    1.42.256–0.3550.283
    1.62.039–0.3270.261
    1.81.855–0.3020.242
    2.01.698–0.2800.225
    2.51.394–0.2370.192
    3.01.178–0.2040.166
    3.51.018–0.1790.146
    4.00.895–0.1590.131
    4.50.798–0.1430.118
    5.00.720–0.1300.107
    下载: 导出CSV
    Baidu
  • [1]

    Yan J, Wang G, Yang P, Li D, Bian J 2022 Sci. Total Environ. 817 152776Google Scholar

    [2]

    Liu Y, Tang G, Liu B, et al. 2022 Atmos. Environ. 275 119018Google Scholar

    [3]

    Breeze P 2017 Electricity Generation and the Environment (Academic Press) pp33–47

    [4]

    Abdul-Wahab S A, Azzi M, Johnson G M, et al. 2003 Process Saf. Environ. 81 363Google Scholar

    [5]

    Salome C M, Brown N J, Marks G B, et al. 1996 Eur. Respir. J. 9 910Google Scholar

    [6]

    Li H, Liu W, Kan R 2019 Rev. Sci. Instrum. 90 46103Google Scholar

    [7]

    Fereja T H, Hymete A, Gunasekaran T 2013 ISRN Spectroscopy 230858Google Scholar

    [8]

    Steffenson D M, Stedman D H 1974 Anal. Chem. 46 1704Google Scholar

    [9]

    Ridley B A, Grahek F E 1990 J. Atmos. Ocean. Tech. 7 307Google Scholar

    [10]

    蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏 2014 63 083301Google Scholar

    Lan L J, Ding Y J, Jia J W, Du Y J, Peng Z M, 2014 Acta Phys. Sin. 63 083301Google Scholar

    [11]

    Kormann R, Fischer H, Gurk C, et al. 2002 Spectrochim Acta A Mol. Biomol. Spectrosc. 58 2489Google Scholar

    [12]

    Cui X, Dong F, Zhang Z, Sun P, Xia H, Fertein E, Chen W 2018 Atmos. Environ. 189 125Google Scholar

    [13]

    Chao X, Jeffries J B, Hanson R K 2012 Appl. Phys. B 106 987Google Scholar

    [14]

    Magne L, Pasquiers S 2005 C. R. Phys. 6 908Google Scholar

    [15]

    Liao W, Hecobian A, Mastromarino J, Tan D 2006 Atmos. Environ. 40 17Google Scholar

    [16]

    Miyazaki K, Matsumoto J, Kato S, Kajii Y 2008 Atmos. Environ. 42 7812Google Scholar

    [17]

    崔执凤 陈 东 凤尔银 季学韩 陆同兴 李学初 2000 49 2151Google Scholar

    Cui Z F, Chen D, Feng E Y, Ji X H, Lu T X, Li X C 2000 Acta Phys. Sin. 49 2151Google Scholar

    [18]

    Peng B, Zhou Y, Liu G, He Y, Gao C, Guo Y 2020 Spectrochi. Acta. A 233 118169Google Scholar

    [19]

    Wang L, Zhang Y, Zhou X, Qin F, Zhang Z 2017 Sens. Actuators B Chem. 241 146Google Scholar

    [20]

    Peng B, Gao C, Zhou Y, Guo Y 2020 Sens. Actuators B Chem. 312 127988Google Scholar

    [21]

    Yang X, Peng Z, Ding Y, Du Y 2021 Fuel 288 119666Google Scholar

    [22]

    Zhang Y G, Wang H S, Somesfalean G, Wang Z Y, Lou X T, Wu S H, Zhang Z G, Qin Y K 2010 Atmos. Environ. 44 4266Google Scholar

    [23]

    Li Y, Zhang X, Li X, et al. 2018 Appl. Spectrosc. 72 1244Google Scholar

    [24]

    Sepman A, Gullberg M, Wiinikka H 2020 Appl. Phys. B 126 100Google Scholar

    [25]

    段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清 2021 70 010702Google Scholar

    Duan J, Tang K, Qin M, Wang D, Wang M D, Fang W, Meng F H, Xie P H, Liu J G, Liu W Q 2021 Acta Phys. Sin. 70 010702Google Scholar

    [26]

    Buijs K, Maurice M J 1969 Anal. Chim. Acta 47 469Google Scholar

    [27]

    Donovan R J, Hussain D, Kirsch L J 1970 Trans. Faraday. Soc. 66 2551Google Scholar

    [28]

    Mellqvist J, Rosén A 1996 J. Quant. Spectrosc. Radiat. Transf 56 209Google Scholar

    [29]

    Trad H, Higelin P, Djebaı̈li-Chaumeix N, Mounaim-Rousselle C 2005 J. Quant. Spectrosc. Radiat. Transf. 90 275Google Scholar

    [30]

    Wong A, Yurchenko S N, Bernath P, et al. 2017 Mon. Not. R. Astron. Soc. 470 882Google Scholar

    [31]

    Luque J, Crosley D R LIFBASE: Database and Spectral Simulation Program (Version 1.5) 1999 SRI International Report MP 99 009

计量
  • 文章访问数:  5843
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 修回日期:  2022-06-21
  • 上网日期:  2022-10-09
  • 刊出日期:  2022-10-20

/

返回文章
返回
Baidu
map