搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

驱动激光波长对超短脉冲与原子相互作用产生高次谐波发射的影响

张頔玉 蓝文迪 李雪峰 张稣稣 郭福明 杨玉军

引用本文:
Citation:

驱动激光波长对超短脉冲与原子相互作用产生高次谐波发射的影响

张頔玉, 蓝文迪, 李雪峰, 张稣稣, 郭福明, 杨玉军

Influence of driving-laser wavelength on emission of high-order harmonic wave generated by atoms irradiated by ultrashort laser pulse

Zhang Di-Yu, Lan Wen-Di, Li Xue-Feng, Zhang Su-Su, Guo Fu-Ming, Yang Yu-Jun
PDF
HTML
导出引用
  • 通过数值求解含时薛定谔方程方案, 理论研究了在有质动力能不变条件下, 不同波长超短激光辐照原子产生的高次谐波发射. 发现随着驱动激光波长的增加, 谐波发射的强度降低且发射谱中出现新的峰值结构. 通过谐波发射行为的时间频率分析, 电子密度的含时演化以及本征态布居含时分析发现, 谐波新的峰值产生根源是电子从激发态电离后返回母体离子产生的谐波发射与从基态电离产生的谐波发射之间的干涉.
    With the numerical solution of the time-dependent Schrodinger equation, we theoretically investigate the high-order harmonic emissions generated by the atoms irradiated by the ultrashort lasers with different wavelengths but the same pondermotive energy. As the driving-laser wavelength increases, the intensity of the high-harmonic emission decreases. Comparing with the harmonic spectra of atoms driven by a 1000-nm-wavelength laser pulse, a new peak structure appears in the spectra of atoms driven by a 5000-nm-wavelength laser wavelength. It is shown by the time-frequency analysis of the harmonic emission, the time-dependent evolution of the electron density, and the time-dependent population analysis of the eigenstate, that the physical mechanism behind the new peak appearing in the harmonic spectra is the interference between the harmonic emission generated by the electrons ionized out of the excited atoms returning to the parent ions and the harmonic emissions resulting from the ground state ionization.
      通信作者: 杨玉军, yangyj@jlu.edu.cn
    • 基金项目: 国家重大研究计划(批准号: 2019YFA0307700)和国家自然科学基金(批准号: 12074145, 11627807, 11774129)资助的课题
      Corresponding author: Yang Yu-Jun, yangyj@jlu.edu.cn
    • Funds: Project supported by the National Major Research Plan of China (Grant No. 2019YFA0307700) and the National Natural Science Foundation of China (Grant Nos. 12074145, 11627807, 11774129)
    [1]

    Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389Google Scholar

    [2]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar

    [3]

    Fu L B, Xin G G, Ye D F, Liu J 2012 Phys. Rev. Lett. 108 103601Google Scholar

    [4]

    Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun. 9 2805Google Scholar

    [5]

    Qiao Y, Huo Y Q, Jiang S C, Yang Y J, Chen J G 2022 Opt. Express 30 9971Google Scholar

    [6]

    Guo X L, Jin C, He Z Q, Zhao S F, Zhou X X, Cheng Y 2021 Chin. Phys. Lett. 38 123301Google Scholar

    [7]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202Google Scholar

    [8]

    Li X F, l’Huillier A, Ferray M, Lompré L A, Mainfray G 1989 Phys. Rev. A 39 5751Google Scholar

    [9]

    Altucci C, Velotta R, Heesel E, Springate E, Marangos J P, Vozzi C 2006 Phys. Rev. A 73 043411Google Scholar

    [10]

    Ishii N, Kaneshima K, Kitano K, Kanai T, Watanabe S, Itatani J 2014 Nat. Commun. 5 3331Google Scholar

    [11]

    Silva F, Teichmann S M, Cousin S L, Hemmer M, Biegert J 2015 Nat. Commun. 6 6611Google Scholar

    [12]

    Marangos J P 2016 J. Phys. B 49 132001Google Scholar

    [13]

    Dennis F G, Michael T, Elisabeth R S, Zhang X S, Benjamin R G, Christina L P, Robert K J, Charles B, Daniel E A, Henry C K, Margaret M, Murnane, Giulia F M 2017 Nat. Photonics 11 259Google Scholar

    [14]

    Tadesse G K, Eschen W, Klas R, Hilbert V, Schelle D, Nathanael A 2018 Sci. Rep. 8 8677

    [15]

    Avner F, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photonics 8 543Google Scholar

    [16]

    Kfier O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M, Cohen O 2015 Nat. Photonics 9 99Google Scholar

    [17]

    Nisoli M, Decleva P, Calegari F, Palacios A, Martín F 2017 Chem. Rev. 117 10760Google Scholar

    [18]

    Donnelly T D, Ditmire T, Neuman K, Perry M, Falcone R. W 1996 Phys. Rev. Lett. 76 2472Google Scholar

    [19]

    Popmintchev T, Chen M Y, Popmintchevpaul D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, Kapteyn H C 2012 Science 336 1287Google Scholar

    [20]

    Schiffrin A, Paasch-Colberg T, Karpowicz N, Apalkov V, Gerster D, Mühlbrandt S, Korbman M, Reichert J, Schultze M, Holzner S, Barth J V, Kienberger R, Ernstorfer R, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 70Google Scholar

    [21]

    Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201Google Scholar

    [22]

    Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dorner R, Mullerm H G, Büttiker M, Keller R U 2008 Science 322 1525Google Scholar

    [23]

    Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348Google Scholar

    [24]

    Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horný L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F, Wörner H J 2015 Science 350 790Google Scholar

    [25]

    Hassan M Th, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar

    [26]

    Calegari F, Trabattoni A, Palacios A, Ayuso D, Castrovilli M C, Greenwood J B, Decleva P, Martín F, Nisoli M 2016 J. Phys. B 49 142001Google Scholar

    [27]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 4 509

    [28]

    Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2004 Nature 427 817821Google Scholar

    [29]

    Andriukaitis G, Balčiūnas T, Ališauskas S, Pugžlys A, Baltuška A, Popmintchev T, Chen M C, Murnane M M, Kapteyn H C 2011 Opt. Lett. 36 2755Google Scholar

    [30]

    Krebs M, Hädrich S, Demmler S, Rothhardt J, Zair A, Chipperfield L, Limpert J, Tünnermann A 2013 Nat. Photonics 7 555Google Scholar

    [31]

    Liang H k, Krogen P, Wang Z, Park H, Kroh T, Zawilski K, Schunemann P, Moses J, DiMauro L F, Kärtner F X, Hong K H 2017 Nat. Commun. 8 141Google Scholar

    [32]

    Labaye F, Gaponenko M, Modsching N, Brochard P, Paradis C, Schilt S, Wittwer V J, Südmeyer T 2019 IEEE J. Sel. Top. Quantum Electron. 25 880619Google Scholar

    [33]

    Pires H, Baudisch M, Sanchez D, Hemmer M, Biegert J 2015 Prog. Quantum. Electron. 43 1Google Scholar

    [34]

    Musheghyan M, Geetha P P, Faccialà D, Pusala A, Crippa G, Campolo A, Ciriolo A G, Devetta M, Assion A, Manzoni C, Vozzi C, Stagira S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 185402Google Scholar

    [35]

    Zhu X L, Chen M, Weng S M, McKenna P, Sheng Z M, Zhang J 2019 Phys. Rev. Appl. 12 054024Google Scholar

    [36]

    Tomilov S, Hoffmann M, Wang Y, Saraceno C J 2021 J. Phys.: Photonics 3 022002Google Scholar

    [37]

    Grafenstein L von, Bock M, Ueberschaer D, Escoto E, Koç A, Zawilski K, Schunemann P, Griebner U, Elsaesser T 2020 Opt. Lett. 45 5998Google Scholar

    [38]

    Tian K, He L, Yang X, Liang H 2021 Photonics 8 290Google Scholar

    [39]

    Feng T, Heilmann A, Bock M, Ehrentraut L, Witting T, Yu H H, Stiel H, Eisebitt S, Schnürer M 2020 Opt. Express 28 8724Google Scholar

    [40]

    Leshchenko V E, Talbert B K, Lai Y H, Li S, Tang Y, Hageman S J, Smith G, Agostini P, DiMauro L F, Blaga C I 2020 Optica 7 981Google Scholar

    [41]

    Schoenlein R, Elsaesser T, Holldack K, Huang Z, Kapteyn H, Murnane M, Woerner M 2019 Philos. Trans. R. Soc. London, Ser. A 377 20180384Google Scholar

    [42]

    Kleine C, Ekimova M, Goldsztejn G, Raabe S, Strüber C, Ludwig J, Yarlagadda S, Eisebitt S, Vrakking M J J, Elsaesser T, Nibbering E T J, Rouzée A 2019 J. Phys. Chem. Lett. 10 52Google Scholar

    [43]

    Pupeikis J, Chevreuil P A, Bigler N, Gallmann L, Phillips C R, Keller U 2020 Optics 7 168

    [44]

    Duchon C E 1979 J. Appl. Meteorol. Clim. 18 1016Google Scholar

    [45]

    Qiao Y, Wu D, Chen J G, Wang J, Guo F M, Yang Y J 2019 Phys. Rev. A 100 06342

    [46]

    Wang J, Chen G, Li S Y, Ding D J, Chen J G, Guo F M, Yang Y J 2015 Phys. Rev. A 92 033848Google Scholar

    [47]

    Wang J, Chen G, Guo F M, Li S Y, Chen J G, Yang Y J 2013 Chin. Phys. B 22 033203Google Scholar

    [48]

    Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X, Sun J Z 2007 Chin. Phys. Lett. 6 1537

    [49]

    Guo F M, Yang Y J, Jin M X, Ding D J, Zhu Q R 2009 Chin. Phys. Lett. 26 053201Google Scholar

    [50]

    Serebryannikov E E, Zheltikov A M 2016 Phys. Rev. Lett. 116 123901Google Scholar

    [51]

    Chen J, Zeng B, Liu X, Cheng Y, Xu Z 2009 New J. Phys. 11 113021Google Scholar

  • 图 1  波长为1000 nm (黑色点线)和5000 nm (红色实线)的驱动激光与原子作用产生的高次谐波发射

    Fig. 1.  High-order harmonic generated from an atom irradiated by the driving lasers with wavelengths of 1000 nm (black dotted line) and 5000 nm (red solid line)

    图 2  Keldysh参数为0.3, 波长为1000−5000 nm的驱动激光与原子作用产生的高次谐波发射随波长的改变

    Fig. 2.  When the Keldysh parameter is 0.3, the variation of the high-order harmonic radiation intensity with the driving laser wavelength in the 1000−5000 nm range

    图 3  波长为1000 nm的驱动激光与原子作用产生的高次谐波发射的时间行为, 图中黑色和紫色实线为经典三步模型计算的发光能量

    Fig. 3.  Temporal behavior of high-order harmonic generated by the atom irradiated by the driving laser with a wavelength of 1000 nm, the black and purple line represent the energy calculated by the simple man model

    图 4  (a)波长为5000 nm的驱动激光与原子作用产生的高次谐波发射的时间行为; (b)电子的概率密度随着时间的变化

    Fig. 4.  (a) Temporal behavior of high-order harmonic generated by the irradiated by the driving laser with a wavelength of 5000 nm; (b) variation of electron probability density with time

    图 5  (a)波长为1000 nm和(b) 5000 nm驱动激光辐照原子的激发态布居(红色点线)和电离态布居(黑色实线)随着时间的变化

    Fig. 5.  Variation of excited states population (red dotted line) and continuum states population (black solid line) of atoms irradiated with a driving laser at a wavelength of (a) 1000 nm and (b) 5000 nm with time

    图 6  利用谐波能量2.5—4.0 a.u.的谐波发射合成的超短脉冲强度随着时间的改变

    Fig. 6.  Variation of intensity of ultrashort pulses (synthesized by harmonic emission with harmonic energy 2.5–4.0 a.u.)with time

    Baidu
  • [1]

    Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389Google Scholar

    [2]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar

    [3]

    Fu L B, Xin G G, Ye D F, Liu J 2012 Phys. Rev. Lett. 108 103601Google Scholar

    [4]

    Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun. 9 2805Google Scholar

    [5]

    Qiao Y, Huo Y Q, Jiang S C, Yang Y J, Chen J G 2022 Opt. Express 30 9971Google Scholar

    [6]

    Guo X L, Jin C, He Z Q, Zhao S F, Zhou X X, Cheng Y 2021 Chin. Phys. Lett. 38 123301Google Scholar

    [7]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202Google Scholar

    [8]

    Li X F, l’Huillier A, Ferray M, Lompré L A, Mainfray G 1989 Phys. Rev. A 39 5751Google Scholar

    [9]

    Altucci C, Velotta R, Heesel E, Springate E, Marangos J P, Vozzi C 2006 Phys. Rev. A 73 043411Google Scholar

    [10]

    Ishii N, Kaneshima K, Kitano K, Kanai T, Watanabe S, Itatani J 2014 Nat. Commun. 5 3331Google Scholar

    [11]

    Silva F, Teichmann S M, Cousin S L, Hemmer M, Biegert J 2015 Nat. Commun. 6 6611Google Scholar

    [12]

    Marangos J P 2016 J. Phys. B 49 132001Google Scholar

    [13]

    Dennis F G, Michael T, Elisabeth R S, Zhang X S, Benjamin R G, Christina L P, Robert K J, Charles B, Daniel E A, Henry C K, Margaret M, Murnane, Giulia F M 2017 Nat. Photonics 11 259Google Scholar

    [14]

    Tadesse G K, Eschen W, Klas R, Hilbert V, Schelle D, Nathanael A 2018 Sci. Rep. 8 8677

    [15]

    Avner F, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photonics 8 543Google Scholar

    [16]

    Kfier O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M, Cohen O 2015 Nat. Photonics 9 99Google Scholar

    [17]

    Nisoli M, Decleva P, Calegari F, Palacios A, Martín F 2017 Chem. Rev. 117 10760Google Scholar

    [18]

    Donnelly T D, Ditmire T, Neuman K, Perry M, Falcone R. W 1996 Phys. Rev. Lett. 76 2472Google Scholar

    [19]

    Popmintchev T, Chen M Y, Popmintchevpaul D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, Kapteyn H C 2012 Science 336 1287Google Scholar

    [20]

    Schiffrin A, Paasch-Colberg T, Karpowicz N, Apalkov V, Gerster D, Mühlbrandt S, Korbman M, Reichert J, Schultze M, Holzner S, Barth J V, Kienberger R, Ernstorfer R, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 70Google Scholar

    [21]

    Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201Google Scholar

    [22]

    Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dorner R, Mullerm H G, Büttiker M, Keller R U 2008 Science 322 1525Google Scholar

    [23]

    Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348Google Scholar

    [24]

    Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horný L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F, Wörner H J 2015 Science 350 790Google Scholar

    [25]

    Hassan M Th, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar

    [26]

    Calegari F, Trabattoni A, Palacios A, Ayuso D, Castrovilli M C, Greenwood J B, Decleva P, Martín F, Nisoli M 2016 J. Phys. B 49 142001Google Scholar

    [27]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 4 509

    [28]

    Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2004 Nature 427 817821Google Scholar

    [29]

    Andriukaitis G, Balčiūnas T, Ališauskas S, Pugžlys A, Baltuška A, Popmintchev T, Chen M C, Murnane M M, Kapteyn H C 2011 Opt. Lett. 36 2755Google Scholar

    [30]

    Krebs M, Hädrich S, Demmler S, Rothhardt J, Zair A, Chipperfield L, Limpert J, Tünnermann A 2013 Nat. Photonics 7 555Google Scholar

    [31]

    Liang H k, Krogen P, Wang Z, Park H, Kroh T, Zawilski K, Schunemann P, Moses J, DiMauro L F, Kärtner F X, Hong K H 2017 Nat. Commun. 8 141Google Scholar

    [32]

    Labaye F, Gaponenko M, Modsching N, Brochard P, Paradis C, Schilt S, Wittwer V J, Südmeyer T 2019 IEEE J. Sel. Top. Quantum Electron. 25 880619Google Scholar

    [33]

    Pires H, Baudisch M, Sanchez D, Hemmer M, Biegert J 2015 Prog. Quantum. Electron. 43 1Google Scholar

    [34]

    Musheghyan M, Geetha P P, Faccialà D, Pusala A, Crippa G, Campolo A, Ciriolo A G, Devetta M, Assion A, Manzoni C, Vozzi C, Stagira S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 185402Google Scholar

    [35]

    Zhu X L, Chen M, Weng S M, McKenna P, Sheng Z M, Zhang J 2019 Phys. Rev. Appl. 12 054024Google Scholar

    [36]

    Tomilov S, Hoffmann M, Wang Y, Saraceno C J 2021 J. Phys.: Photonics 3 022002Google Scholar

    [37]

    Grafenstein L von, Bock M, Ueberschaer D, Escoto E, Koç A, Zawilski K, Schunemann P, Griebner U, Elsaesser T 2020 Opt. Lett. 45 5998Google Scholar

    [38]

    Tian K, He L, Yang X, Liang H 2021 Photonics 8 290Google Scholar

    [39]

    Feng T, Heilmann A, Bock M, Ehrentraut L, Witting T, Yu H H, Stiel H, Eisebitt S, Schnürer M 2020 Opt. Express 28 8724Google Scholar

    [40]

    Leshchenko V E, Talbert B K, Lai Y H, Li S, Tang Y, Hageman S J, Smith G, Agostini P, DiMauro L F, Blaga C I 2020 Optica 7 981Google Scholar

    [41]

    Schoenlein R, Elsaesser T, Holldack K, Huang Z, Kapteyn H, Murnane M, Woerner M 2019 Philos. Trans. R. Soc. London, Ser. A 377 20180384Google Scholar

    [42]

    Kleine C, Ekimova M, Goldsztejn G, Raabe S, Strüber C, Ludwig J, Yarlagadda S, Eisebitt S, Vrakking M J J, Elsaesser T, Nibbering E T J, Rouzée A 2019 J. Phys. Chem. Lett. 10 52Google Scholar

    [43]

    Pupeikis J, Chevreuil P A, Bigler N, Gallmann L, Phillips C R, Keller U 2020 Optics 7 168

    [44]

    Duchon C E 1979 J. Appl. Meteorol. Clim. 18 1016Google Scholar

    [45]

    Qiao Y, Wu D, Chen J G, Wang J, Guo F M, Yang Y J 2019 Phys. Rev. A 100 06342

    [46]

    Wang J, Chen G, Li S Y, Ding D J, Chen J G, Guo F M, Yang Y J 2015 Phys. Rev. A 92 033848Google Scholar

    [47]

    Wang J, Chen G, Guo F M, Li S Y, Chen J G, Yang Y J 2013 Chin. Phys. B 22 033203Google Scholar

    [48]

    Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X, Sun J Z 2007 Chin. Phys. Lett. 6 1537

    [49]

    Guo F M, Yang Y J, Jin M X, Ding D J, Zhu Q R 2009 Chin. Phys. Lett. 26 053201Google Scholar

    [50]

    Serebryannikov E E, Zheltikov A M 2016 Phys. Rev. Lett. 116 123901Google Scholar

    [51]

    Chen J, Zeng B, Liu X, Cheng Y, Xu Z 2009 New J. Phys. 11 113021Google Scholar

  • [1] 姚晓岱, 吴爽, 赵锐, 吴淼鑫, 刘航, 金光勇, 于永吉. 基于台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的3.4 μm中红外脉冲串激光器.  , 2024, 73(4): 044206. doi: 10.7498/aps.73.20231348
    [2] 张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文. 高电荷态离子阿秒激光光谱研究展望.  , 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [3] 陈高. 利用三色组合脉冲激光获得孤立阿秒脉冲发射.  , 2022, 71(5): 054204. doi: 10.7498/aps.71.20211502
    [4] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究.  , 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [5] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展.  , 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [6] 黄峰, 李鹏程, 周效信. 利用两色组合激光场驱动氦原子产生单个阿秒脉冲.  , 2012, 61(23): 233203. doi: 10.7498/aps.61.233203
    [7] 陈基根, 曾思良, 杨玉军, 程超. 三色激光控制量子路径生成短于30阿秒的孤立脉冲.  , 2012, 61(12): 123201. doi: 10.7498/aps.61.123201
    [8] 夏昌龙, 刘学深. 任意夹角的双色偏振激光作用下孤立阿秒脉冲的产生.  , 2012, 61(4): 043303. doi: 10.7498/aps.61.043303
    [9] 陆莹瑛, 曾志男, 郑颖辉, 邹璞, 刘灿东, 龚成, 李儒新, 徐至展. 双色光场驱动产生单个阿秒脉冲过程中的宏观效应.  , 2011, 60(10): 103202. doi: 10.7498/aps.60.103202
    [10] 潘慧玲, 李鹏程, 周效信. 利用两束同色激光场和半周期脉冲驱动原子产生单个阿秒脉冲.  , 2011, 60(4): 043203. doi: 10.7498/aps.60.043203
    [11] 李伟, 王国利, 周效信. 啁啾激光与半周期脉冲形成的组合场驱动原子产生单个阿秒脉冲.  , 2011, 60(12): 123201. doi: 10.7498/aps.60.123201
    [12] 陈基根, 杨玉军, 陈漾. 附加谐波脉冲生成强的39阿秒孤立脉冲.  , 2011, 60(3): 033202. doi: 10.7498/aps.60.033202
    [13] 成春芝, 周效信, 李鹏程. 原子在红外激光场中产生高次谐波及阿秒脉冲随波长的变化规律.  , 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [14] 罗牧华, 张秋菊, 闫春燕. 超相对论激光和稠密等离子体作用产生阿秒脉冲的优化.  , 2010, 59(12): 8559-8565. doi: 10.7498/aps.59.8559
    [15] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲.  , 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [16] 曹 伟, 兰鹏飞, 陆培祥. 利用43飞秒的强激光脉冲实现单个阿秒脉冲输出的新机理.  , 2007, 56(3): 1608-1612. doi: 10.7498/aps.56.1608
    [17] 郑颖辉, 曾志男, 李儒新, 徐至展. 极紫外阿秒脉冲在高次谐波产生过程中引起的非偶极效应.  , 2007, 56(4): 2243-2249. doi: 10.7498/aps.56.2243
    [18] 曹 伟, 兰鹏飞, 陆培祥. 紧聚焦激光束作用于电子实现单个阿秒脉冲输出.  , 2006, 55(5): 2115-2121. doi: 10.7498/aps.55.2115
    [19] 郑 君, 盛政明, 张 杰. 高能电子与超强激光束作用产生的阿秒脉冲列.  , 2005, 54(6): 2638-2644. doi: 10.7498/aps.54.2638
    [20] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲.  , 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
计量
  • 文章访问数:  4149
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 修回日期:  2022-05-17
  • 上网日期:  2022-11-16
  • 刊出日期:  2022-12-05

/

返回文章
返回
Baidu
map