搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HoCoSi快淬带的磁性和各向异性磁热效应

张艳 宗朔通 孙志刚 刘虹霞 陈峰华 张克维 胡季帆 赵同云 沈保根

引用本文:
Citation:

HoCoSi快淬带的磁性和各向异性磁热效应

张艳, 宗朔通, 孙志刚, 刘虹霞, 陈峰华, 张克维, 胡季帆, 赵同云, 沈保根

Magnetic and anisotropic magnetocaloric effects of HoCoSi fast quenching ribbons

Zhang Yan, Zong Shuo-Tong, Sun Zhi-Gang, Liu Hong-Xia, Chen Feng-Hua, Zhang Ke-Wei, Hu Ji-Fan, Zhao Tong-Yun, Shen Bao-Gen
PDF
HTML
导出引用
  • 磁制冷技术的发展取决于磁热效应材料的研究进展. 其中, 具有各向异性磁热效应的材料可以用于旋转磁制冷技术, 有利于制冷装置的大幅度简化. 本文研究了快淬带HoCoSi化合物的磁性、磁热效应及磁各向异性. 在Tt = 5.7 K以下的低温, HoCoSi快淬带铁磁和螺旋磁性共存, 随着温度的升高, 在TC =13.7 K处发生了铁磁(FM)到顺磁(PM)的二级相变. XRD和SEM都显示出HoCoSi具有择优取向. 为了获得大的磁热效应并确定择优取向对磁性和磁热效应的影响, 对10 m/s下HoCoSi快淬带在磁场平行和垂直织构方向时居里温度附近的等温磁化曲线进行分析, 并计算了对应的磁熵变和磁制冷能力. 在外磁场μ0H = 0—5 T的磁场变化时, 磁场平行和垂直织构方向的最大磁熵变值–ΔSM分别为22 J/(kg·K)和12 J/(kg·K); 制冷能力RC (RCP) 分别为360 (393.8) J/kg和160 (254.4) J/kg, 表明10 m/s的HoCoSi快淬带具有大的磁热效应和明显的磁各向异性, 有望实现旋转样品磁制冷技术.
    The performance of magnetocaloric effect materials is one of the key factors restricting the development of magnetic refrigeration technology. Materials with anisotropic magnetocaloric effect can be used in the rotary magnetic refrigeration technology, which is beneficial to the simplification of refrigeration devices. In this work, the magnetic properties, magnetocaloric effects, and magnetic anisotropies of rapidly quenched HoCoSi compounds are investigated. At low temperatures below Tt = 5.7 K, the HoCoSi ferromagnetism and helical magnetism coexist. With the increase of temperature, the HoCoSi undergoes a second-order phase transition from ferromagnetic (FM) to paramagnetic (PM) phase at TC = 13.7 K. Both XRD and SEM show that the HoCoSi has a preferred orientation. In order to obtain a large magnetocaloric effect and to determine the effect of preferred orientation on magnetism and magnetocaloric effect, the isothermal magnetization curves of the 10 m/s–HoCoSi fast quenched belt in the directions of H parallel and perpendicular to texture around the Curie temperature are analyzed. The corresponding magnetic entropy change (–ΔSM) and magnetic refrigeration capacity (RC) are calculated. Under the magnetic field changing from 0 to 5 T, the value of –ΔSM is 22 J/(kg·K) in the direction of H parallel to the texture and 12 J/(kg·K) in the direction of H perpendicular to texture , and their corresponding values of RC(RCP)are 360 (393.8) J·kg–1 and 160 (254.4) J/kg. The value of –ΔSM reaches 12.5 J/(kg·K)even at μ0H = 0–2 T in the direction of H parallel to the texture. It is obvious that the 10-m/s-HoCoSi fast quenching belt shows a large low-field magnetocaloric effect and obvious magnetic anisotropy, which is expected to be used to realize the magnetic refrigeration technology of rotating samples.
      通信作者: 宗朔通, zongshuotong@tyust.edu.cn
    • 基金项目: 山西省高等学校科技创新计划项目(批准号: 2021 L304)、太原科技大学科研启动基金(批准号: 20202022)、来晋优秀博士科研基金(批准号: 20212002)和武汉理工大学材料合成与加工先进技术国家重点实验室(批准号: 2022-KF-32)资助的课题.
      Corresponding author: Zong Shuo-Tong, zongshuotong@tyust.edu.cn
    • Funds: Project supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2021 L304), the Taiyuan University of Science and Technology Scientific Research Initial Funding (Grant No. 20202022), the Funding for Outstanding Doctoral Research in Jin (Grant No. 20212002), the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) (Grant No. 2022-KF-32).
    [1]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545Google Scholar

    [2]

    Franco V, Blázquez J S, Ingale B, Conde A 2012 Annu. Rev. Mater. Sci. 42 305Google Scholar

    [3]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401Google Scholar

    [4]

    Gschneidner K A Jr, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479Google Scholar

    [5]

    Zhang H, Shen B G 2015 Chin. Phys. B 24 127504Google Scholar

    [6]

    郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 王军民 2016 65 217502Google Scholar

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502Google Scholar

    [7]

    Li L W, Yan M 2022 JMST

    [8]

    Zhang Y K 2019 J. Alloys Compd. 787 1173Google Scholar

    [9]

    Li L W, Yan M 2020 J. Alloys Compd. 823 153810Google Scholar

    [10]

    Nikitin S A, Skokov K P, Koshkid'ko Y S, Pastushenkov Y G, Ivanova T I 2010 Phys. Rev. Lett. 105 137205Google Scholar

    [11]

    Balli M, Mansouri S, Dimitrov D Z, Fournier P, Jandl S, Juang J Y 2020 Phys. Rev. Mater. 4 114411Google Scholar

    [12]

    Nikitin S A, Ivanova T I, Zvonov A I, Koshkid'ko Y S, Ćwik J, Rogacki K 2018 Acta Mater. 161 331Google Scholar

    [13]

    Liu Y, Petrovic C 2018 Phys. Rev. B 97 174418Google Scholar

    [14]

    Liu Y, Petrovic C 2019 Phys Rev. Mater. 3 014001Google Scholar

    [15]

    Zhang H, Li Y V, Liu E K, Ke Y J 2015 Sci. Rep. 5 11929Google Scholar

    [16]

    Zhang H, Xing C F, Zhou H, Zheng X Q, Miao X F, He L H, Chen J, Lu H L, Liu E K, Han W T, Zhang H G, Wang Y X, Long Y, Eijk L V, Brück E 2020 Acta Mater. 193 2020

    [17]

    Barua R, Lejeune B T, Ke L, Hadjipanayis G, Levin E M, McCallum R W, Kramer M J, Lewis L H 2018 J. Alloys. Compd. 745 505Google Scholar

    [18]

    Welter R, Venturini G, Ressouche E, Malaman B 1994 J. Alloys Compd. 210 279Google Scholar

    [19]

    Gupta S, Suresh K G 2013 Mater. Lett. 113 195Google Scholar

    [20]

    Leciejewicz J, Stusser N, Kolenda M, Szytuta A, Zygmunt A 1996 J. Alloys Compd. 240 164Google Scholar

    [21]

    Yuan F, Du J, Shen B L 2012 Appl. Phys. Lett. 101 032405Google Scholar

    [22]

    Szytula A, Balanda M, Hofmann M, Leciejewicz J, Kolenda M, Penc B, Zygmunt A 2009 J. Appl. Phys. 105 023901Google Scholar

    [23]

    Wang J L, Marquina C, Ibarra M R, Wu G H 2006 Phys. Rev. B 73 094436

    [24]

    Szytula A, Balanda M, Hofmann M, Leciejewicz J, Kolenda M, Penc B, Zygmunt A 1999 J. Magn. Magn. Mater. 191 122Google Scholar

    [25]

    许志一 2012 博士学位论文 (北京: 中国科学院物理研究所)

    Xu Z Y 2012 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese)

    [26]

    Guo D, Zhang Y K, Wu B B, Wang H F, Guan R G, Li X, Ren Z M 2020 J. Alloy. Compd. 830 154666Google Scholar

    [27]

    Ma Y, Dong X, Qi Y, 2019 J. Magn. Magn. Mater. 471 25Google Scholar

    [28]

    Zhang Y, Zhu J, Li S, Zhang Z Q, Wang J, Ren Z M 2022 Sci. China Mater. 65 1345Google Scholar

    [29]

    Li L W, Xu P, Ye S K, Li Y, Liu G D, Huo D X, Yan M 2020 Acta Mater. 194 354Google Scholar

    [30]

    Wu B B, Guo D, Wang Y M, Zhang Y K 2020 Ceram. Int. 46 11988Google Scholar

    [31]

    Zhang Y K, Zhang B, Li S, Zhu J, Wu B B, Wang J, Ren Z M 2021 Ceram. Int. 47 18205Google Scholar

  • 图 1  (a)—(d)甩带速度为分别为5 m/s, 10 m/s, 15 m/s, 20 m/s的HoCoSi快淬带在自由面和贴辊面的XRD图(f代表自由面, n代表贴辊面)

    Fig. 1.  (a)−(d) XRD patterns of the HoCoSi fast quenched belts at 5 m/s, 10 m/s, 15 m/s, and 20 m/s on the free surface and the roller surface (f represents the free surface and n represents the roll surface).

    图 2  外场为0.1 T时, 10 m/s甩带速度下的HoCoSi在ZFC和FCC两种模式下的热磁曲线, ZFC的一阶导数曲线显示在下方; 内插图为ZFC模式的1/χ-T 曲线, 实线表示Curie-Weiss拟合

    Fig. 2.  The temperature dependence of magnetization in ZFC and FC mode for HoCoSi of 10 m/s under the field of 0.01 T, and the corresponding ZFC first derivative curves are shown below. The 1/χ-T curve of ZFC was displayed in the insets. The solid line to inverse susceptibility shows the Curie-Weiss fit.

    图 3  在5 m/s, 10 m/s, 15 m/s, 20 m/s甩带速度下HoCoSi快淬带的磁场//织构方向的等温磁化曲线 (a) T = 5 K, 插图为10 m/s的快淬带横截面的SEM图; (b) T = 17 K

    Fig. 3.  The magnetization isotherms of 5 m/s, 10 m/s, 15 m/s, 20 m/s HoCoSi taken in the direction of H parallel to textures: (a) T = 5 K, the SEM image of the cross-section of 10 m/s HoCoSi was displayed in the inset; (b) T = 17 K.

    图 4  甩带速度10 m/s时HoCoSi快淬带在磁场平行 (a)和垂直(b)织构方向的等温磁化曲线; (c) T = 5 K, μ0H = 2 T下的转角磁化曲线

    Fig. 4.  The magnetization isotherms of 10 m/s HoCoSi taken in the direction of H parallel to textures (a) and H perpendicular to textures (b); (c) the magnetization as a function of rotation angle at 5 K in the magnetic field of 2 T.

    图 5  10 m/s的HoCoSi快淬带的$\Delta {S}_{\mathrm{M}}\text-T$变化曲线 (a)磁场平行⊥织构方向; (b)磁场垂直织构方向; 内插图为制冷能力RC随外场变化关系

    Fig. 5.  The$\Delta {S}_{\mathrm{M}}\text-T$ curves of 10 m/s HoCoSi: (a) In the direction of H parallel to textures; (b) in the direction of H perpendicular to textures. The corresponding magnetic refrigeration capacity RC were showed in the insets.

    图 6  10 m/s下HoCoSi快淬带在磁场垂直织构方向的M-T曲线(a)和M-H曲线放大图(b)

    Fig. 6.  The curves of M-T (a) and M-H curve enlarged view(b)of 10 m/s HoCoSi taken in the direction of H perpendicular to the texture.

    表 1  10 m/s下HoCoSi化合物的磁热参数和一些最近报道的 Δμ0H = 5 T 的有前景的低温磁制冷材料

    Table 1.  Magnetocaloric parameters for the 10 m/s HoCoSi compounds and some recently reported promising cryogenic magnetic refrigerants for Δμ0H = 5 T.

    CompoundTM /K$ \left| {\Delta S_{\text{M}}^{{\max}}} \right| $/(J·(kg·K)–1)δTFWHM/KRCP/(J·kg–1)Refs.
    HoCoSi(parallel)13.72217.9393.8This study
    HoCoSi(perpendicular)13.71221.2266.4This study
    Er2Ni1.5Ga2.54.115.718.3254.4[26]
    PrFe2Si28.56.417~100.8[27]
    NdFe2Si215.512.411~116.3[27]
    GdFe2Si28.623.259276.56[28]
    Gd2ZnMnO66.415.214.9226.2[29]
    Ho2ZnMnO66.813.218.7246.5[29]
    Ho2CrMnO66.18.822.0193.7[30]
    Er2CrMnO65.210.314.2146.0[30]
    Er2CuMnO63.69.919.7195.9[31]
    下载: 导出CSV
    Baidu
  • [1]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545Google Scholar

    [2]

    Franco V, Blázquez J S, Ingale B, Conde A 2012 Annu. Rev. Mater. Sci. 42 305Google Scholar

    [3]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401Google Scholar

    [4]

    Gschneidner K A Jr, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479Google Scholar

    [5]

    Zhang H, Shen B G 2015 Chin. Phys. B 24 127504Google Scholar

    [6]

    郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 王军民 2016 65 217502Google Scholar

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502Google Scholar

    [7]

    Li L W, Yan M 2022 JMST

    [8]

    Zhang Y K 2019 J. Alloys Compd. 787 1173Google Scholar

    [9]

    Li L W, Yan M 2020 J. Alloys Compd. 823 153810Google Scholar

    [10]

    Nikitin S A, Skokov K P, Koshkid'ko Y S, Pastushenkov Y G, Ivanova T I 2010 Phys. Rev. Lett. 105 137205Google Scholar

    [11]

    Balli M, Mansouri S, Dimitrov D Z, Fournier P, Jandl S, Juang J Y 2020 Phys. Rev. Mater. 4 114411Google Scholar

    [12]

    Nikitin S A, Ivanova T I, Zvonov A I, Koshkid'ko Y S, Ćwik J, Rogacki K 2018 Acta Mater. 161 331Google Scholar

    [13]

    Liu Y, Petrovic C 2018 Phys. Rev. B 97 174418Google Scholar

    [14]

    Liu Y, Petrovic C 2019 Phys Rev. Mater. 3 014001Google Scholar

    [15]

    Zhang H, Li Y V, Liu E K, Ke Y J 2015 Sci. Rep. 5 11929Google Scholar

    [16]

    Zhang H, Xing C F, Zhou H, Zheng X Q, Miao X F, He L H, Chen J, Lu H L, Liu E K, Han W T, Zhang H G, Wang Y X, Long Y, Eijk L V, Brück E 2020 Acta Mater. 193 2020

    [17]

    Barua R, Lejeune B T, Ke L, Hadjipanayis G, Levin E M, McCallum R W, Kramer M J, Lewis L H 2018 J. Alloys. Compd. 745 505Google Scholar

    [18]

    Welter R, Venturini G, Ressouche E, Malaman B 1994 J. Alloys Compd. 210 279Google Scholar

    [19]

    Gupta S, Suresh K G 2013 Mater. Lett. 113 195Google Scholar

    [20]

    Leciejewicz J, Stusser N, Kolenda M, Szytuta A, Zygmunt A 1996 J. Alloys Compd. 240 164Google Scholar

    [21]

    Yuan F, Du J, Shen B L 2012 Appl. Phys. Lett. 101 032405Google Scholar

    [22]

    Szytula A, Balanda M, Hofmann M, Leciejewicz J, Kolenda M, Penc B, Zygmunt A 2009 J. Appl. Phys. 105 023901Google Scholar

    [23]

    Wang J L, Marquina C, Ibarra M R, Wu G H 2006 Phys. Rev. B 73 094436

    [24]

    Szytula A, Balanda M, Hofmann M, Leciejewicz J, Kolenda M, Penc B, Zygmunt A 1999 J. Magn. Magn. Mater. 191 122Google Scholar

    [25]

    许志一 2012 博士学位论文 (北京: 中国科学院物理研究所)

    Xu Z Y 2012 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese)

    [26]

    Guo D, Zhang Y K, Wu B B, Wang H F, Guan R G, Li X, Ren Z M 2020 J. Alloy. Compd. 830 154666Google Scholar

    [27]

    Ma Y, Dong X, Qi Y, 2019 J. Magn. Magn. Mater. 471 25Google Scholar

    [28]

    Zhang Y, Zhu J, Li S, Zhang Z Q, Wang J, Ren Z M 2022 Sci. China Mater. 65 1345Google Scholar

    [29]

    Li L W, Xu P, Ye S K, Li Y, Liu G D, Huo D X, Yan M 2020 Acta Mater. 194 354Google Scholar

    [30]

    Wu B B, Guo D, Wang Y M, Zhang Y K 2020 Ceram. Int. 46 11988Google Scholar

    [31]

    Zhang Y K, Zhang B, Li S, Zhu J, Wu B B, Wang J, Ren Z M 2021 Ceram. Int. 47 18205Google Scholar

  • [1] 王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨. 设计制备具有优异形成能力和磁热效应的GdHoErCoNiAl高熵非晶合金.  , 2024, 73(21): 217101. doi: 10.7498/aps.73.20241132
    [2] 林源, 胡凤霞, 沈保根. 相变调控、磁热效应和反常热膨胀.  , 2023, 72(23): 237501. doi: 10.7498/aps.72.20231118
    [3] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏. 非晶态Gd45Ni30Al15Co10合金的制备与磁热性能.  , 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [4] 张鹏, 朴红光, 张英德, 黄焦宏. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展.  , 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [5] 杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚. 间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响.  , 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [6] 郝志红, 王海英, 张荃, 莫兆军. Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应.  , 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [7] 张虎, 邢成芬, 龙克文, 肖亚宁, 陶坤, 王利晨, 龙毅. 一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性.  , 2018, 67(20): 207501. doi: 10.7498/aps.67.20180927
    [8] 李振兴, 李珂, 沈俊, 戴巍, 高新强, 郭小惠, 公茂琼. 室温磁制冷技术的研究进展.  , 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [9] 霍军涛, 盛威, 王军强. 非晶合金的磁热效应及磁蓄冷性能.  , 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [10] 孙晓东, 徐宝, 吴鸿业, 曹凤泽, 赵建军, 鲁毅. Tb掺杂双层锰氧化物La4/3Sr5/3Mn2O7的磁熵变和电输运性质.  , 2017, 66(15): 157501. doi: 10.7498/aps.66.157501
    [11] 郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根. 磁热效应材料的研究进展.  , 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [12] 董雪, 张国营, 夏往所, 黄逸佳, 胡风. Dy3Al5O12磁热性质研究.  , 2015, 64(17): 177502. doi: 10.7498/aps.64.177502
    [13] 陈湘, 陈云贵, 唐永柏, 肖定全, 李道华. 一级相变磁制冷材料的基础问题探究.  , 2014, 63(14): 147502. doi: 10.7498/aps.63.147502
    [14] 黄逸佳, 张国营, 胡风, 夏往所, 刘海顺. PrNi2的磁和磁热性能研究.  , 2014, 63(22): 227501. doi: 10.7498/aps.63.227501
    [15] 王芳, 原凤英, 汪金芝. Mn42Al50-xFe8+x合金的磁性和磁热效应.  , 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [16] 蔡培阳, 冯尚申, 陈卫平, 薛双喜, 李志刚, 周英, 王海波, 王古平. Ni47Mn32Ga21多晶合金的磁熵变和磁感生应变.  , 2011, 60(10): 107501. doi: 10.7498/aps.60.107501
    [17] 张浩雷, 李哲, 乔燕飞, 曹世勋, 张金仓, 敬超. 哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究.  , 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [18] 敬 超, 陈继萍, 李 哲, 曹世勋, 张金仓. 哈斯勒合金Ni50Mn35In15的马氏体相变及其磁热效应.  , 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [19] 沈 俊, 李养贤, 胡凤霞, 王光军, 张绍英. Ce2Fe16Al化合物在居里温度附近的磁性和磁熵变.  , 2003, 52(5): 1250-1254. doi: 10.7498/aps.52.1250
    [20] 陈伟, 钟伟, 潘成福, 常虹, 都有为. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应.  , 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
计量
  • 文章访问数:  3688
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-13
  • 修回日期:  2022-06-28
  • 上网日期:  2022-08-10
  • 刊出日期:  2022-08-20

/

返回文章
返回
Baidu
map