搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

衬底层对Fe65Co35合金薄膜结构与磁性的影响

韩泽宇 宋乘吉 周杰 郑富

引用本文:
Citation:

衬底层对Fe65Co35合金薄膜结构与磁性的影响

韩泽宇, 宋乘吉, 周杰, 郑富

Effects of underlayer on structures and magnetic properties of Fe65Co35 alloy films

Han Ze-Yu, Song Cheng-Ji, Zhou Jie, Zheng Fu
PDF
HTML
导出引用
  • 采用磁控溅射法制备了具有不同衬底层(Cu, Co和Ni80Fe20)的Fe65Co35双层合金薄膜. 研究了不同衬底材料以及NiFe衬底层厚度对FeCo合金薄膜结构与磁性的影响. 研究结果表明: 衬底层的引入可以增加薄膜的面内单轴各向异性, 且薄膜的软磁性能显著提升, 获得良好软磁性的原因归结为晶粒的细化、层间的偶极相互作用以及表面粗糙度的降低, 并且对于相同厚度的不同衬底层, NiFe衬底层对FeCo薄膜软磁性能的提升最为明显; 通过改变NiFe衬底层厚度, 实现了对薄膜各向异性的调控, NiFe/FeCo表现出良好的高频响应和低的阻尼系数, 同时较小的薄膜厚度能够减小涡流损耗, 因此, 促进了其在高频微波磁性器件方面的应用.
    Fe100-xCox (x = 30–40) alloys have the highest saturation magnetizations, 4πMs ≥ 24 kG (1 G = 10–4 T). Therefore, FeCo thin flms have been widely used in microwave magnetic devices. However, the as-deposited FeCo film has a large coercivity, which is attributed to the large saturation magnetostriction and high magneto-crystalline anisotropy. On the basis of maintaining high saturation magnetization, adding an appropriate underlayer is a simple and effective method to reduce the coercivity of the film and facilitate the magnetic field-induced in-plane uniaxial magnetic anisotropy. Since these kinds of films are used in a high-frequency environment, the eddy current loss in GHz band must be considered. For a certain film material, the thinner the film, the lower the eddy current loss is. However, at present, the thickness of ferromagnetic layer is generally tens of nanometers or even hundreds of nanometers, which will not help to suppress the eddy current loss at high frequency. In the present study, to obtain FeCo films with good soft magnetic properties and excellent high-frequency characteristics, Fe65Co35 alloy films with a thickness of 13 nm and different underlayers (Cu, Co and Ni80Fe20) are prepared by magnetron sputtering. The effects of different underlayer materials and different NiFe underlayer thickness values on the structures and magnetic properties of FeCo films are studied. The results show that the introduction of underlayers can increase the in-plane uniaxial magnetic anisotropies of films, and the soft magnetic properties of films are significantly improved. The reason why the good soft magnetic properties can be achieved is attributed to the grain refinement, the dipolar interaction between layers, and the reduction of surface roughness. For different underlayer materials with the same thickness, NiFe underlayer can obviously improve the soft magnetic properties of FeCo films: the covercivity of easy axis is 23 Oe. By changing the thickness of NiFe underlayer, the dynamic magnetic properties of films can be adjusted. The resonance frequency changes from 3.13 GHz for NiFe(1 nm)/FeCo(13 nm) film to 2.78 GHz for NiFe(9.3 nm)/ FeCo(13 nm) film. For all NiFe/FeCo bilayer films, the real part of the permeability μ′ at low frequency has a large value of 350–450, and the damping coefficient α shows a small value of 0.01–0.02. In addition, the smaller film thickness can reduce eddy current loss, which contributes to its application in high-frequency microwave magnetic devices.
      通信作者: 郑富, zhengfu@nxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11964027)资助的课题
      Corresponding author: Zheng Fu, zhengfu@nxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11964027).
    [1]

    Li T Y, Liu X Y, Li J W, Pan L N, He A N, Dong Y Q 2022 J. Magn. Magn. Mater. 547 168777Google Scholar

    [2]

    Cronin D, Lordan D, Wei G, McCloskey P, Mathúna C O, Masood A 2020 J. Appl. Phys. 127 243903Google Scholar

    [3]

    Tang X L, Yu Y, Su H, Zhang H W, Zhong Z Y, Jing Y L 2018 J. Mater. Sci. 53 3573Google Scholar

    [4]

    Chai G, Phuoc N N, Ong C K 2012 Sci. Rep. 2 832Google Scholar

    [5]

    Masood A, McCloskey P, Mathúna C Ó, Kulkarni S 2017 J. Phys. Conf. Ser. 903 012050Google Scholar

    [6]

    Kurlyandskaya G V, Shcherbinin S V, Volchkov S O, Bhagat S M, Calle E, Pérez R, Vazquez M 2018 J. Magn. Magn. Mater. 459 154Google Scholar

    [7]

    Zheng F, Ma Z, Gao H, Pan F C, Li S T, Cao J W, Bai J M, Wei F L 2017 J. Mater. Sci. Mater. Electron. 28 17448Google Scholar

    [8]

    Yang F J, Min J J, Hui J H, Chen H B, Degao L, Li W J, Chen X Q, Yang C P 2017 J. Mater. Sci. Mater. Electron. 28 11733Google Scholar

    [9]

    Baco S, Abbas Q A, Hayward T J, Morley N A 2021 J. Alloy. Compd. 881 160549Google Scholar

    [10]

    Cabral L, Aragon F H, Villegas-Lelovsky L, Lima M P, Macedo W A A, Da Silva J L F 2019 ACS Appl. Mater. Inter. 11 1529Google Scholar

    [11]

    Vopsaroiu M, Georgieva M, Grundy P J, Fernandez G V, Manzoor S, Thwaites M J, O’Grady K 2005 J. Appl. Phys. 97 10N303Google Scholar

    [12]

    Vas’ko V A, Rantschler J O, Kief M T 2004 IEEE Trans. Magn. 40 2335Google Scholar

    [13]

    Xi L, Du J H, Zhou J J, Ma J H, Li X Y, Wang Z, Zuo Y L, Xue D S 2012 Thin Solid Films 520 5421Google Scholar

    [14]

    王璇, 郑富, 卢佳, 白建民, 王颖, 魏福林 2011 60 017505Google Scholar

    Wang X, Zheng F, Lu J, Bai J M, Wang Y, Wei F L 2011 Acta. Phys. Sin. 60 017505Google Scholar

    [15]

    Wang X, Zheng F, Liu Z Y, Liu X X, Wei D, Wei F L 2009 J. Appl. Phys. 105 07B714Google Scholar

    [16]

    Wu Y P, Yang Y, Yang Z H, Ma F S, Zong B Y, Ding J 2014 J. Appl. Phys. 116 093905Google Scholar

    [17]

    Xu F, Liao Z Q, Huang Q J, Ong C K, Li S D 2011 IEEE Trans. Magn. 47 3921Google Scholar

    [18]

    Acosta A, Fitzell K, Schneider J D, Dong C Z, Yao Z, Wang Y E, Carman G P, Sun N X, Chang J P 2020 Appl. Phys. Lett. 116 222404Google Scholar

    [19]

    Acosta A, Fitzell K, Schneider J D, Dong C Z, Yao Z, Sheil R, Wang Y E, Carman G P, Sun N X, Chang J P 2020 J. Appl. Phys. 128 013903Google Scholar

    [20]

    Fu Y, Miyao T, Cao J W, Yang Z, Matsumoto M, Liu X X, Morisako A 2007 J. Magn. Magn. Mater. 308 165Google Scholar

    [21]

    Li Y B, Li Z H, Liu X, Fu Y, Wei F L, Kamzin A S, Wei D 2010 J. Appl. Phys. 107 09A325Google Scholar

    [22]

    Sun N X, Wang S X 2002 J. Appl. Phys. 92 1477Google Scholar

    [23]

    Shimatsu T, Katada H, Watanabe I, Muraoka H, Nakamura Y 2003 IEEE Trans. Magn. 39 2365Google Scholar

    [24]

    Langford J I, Wilson A J C 1978 J. Appl. Cryst. 11 102Google Scholar

    [25]

    Scherrer P 1918 Nachr. Ges. Wiss. Göttingen 26 98

    [26]

    Herzer G 1990 IEEE Trans. Magn. 26 1397Google Scholar

    [27]

    Jiang H, Chen Y J, Chen L F, Huai Y M 2002 J. Appl. Phys. 91 6821Google Scholar

    [28]

    Inturi V R, Barnard J A 1996 J. Appl. Phys. 79 5904Google Scholar

    [29]

    Liu X X, Kanda H, Morisako A 2011 J. Phys. Conf. Ser. 266 012037Google Scholar

    [30]

    Jung H S, Doyle W D, Wittig J E, Al-Sharab J F, Bentley J 2002 Appl. Phys. Lett. 81 2415Google Scholar

    [31]

    O'Grady K, Laidler H 1999 J. Magn. Magn. Mater. 200 616Google Scholar

    [32]

    Wohlfarth E P 1958 J. Appl. Phys. 29 595Google Scholar

    [33]

    Henkel O 1964 Phys. Stat. Sol. 7 919Google Scholar

    [34]

    Gilbert T L 2004 IEEE Trans. Magn. 40 3443Google Scholar

    [35]

    Ge S H, Yao D S, Yamaguchi M, Yang X L, Zuo H P, Ishii T, Zhou D, Li F 2007 J. Phys. D Appl. Phys. 40 3660Google Scholar

    [36]

    Kuanr B K, Camley R E, Celinski Z 2005 J. Magn. Magn. Mater. 286 276Google Scholar

    [37]

    Ben Youssef J, Vukadinovic N, Billet D, Labrune M 2004 Phys. Rev. B 69 174402Google Scholar

    [38]

    Wu Y P, Han G C, Kong L B 2010 J. Magn. Magn. Mater. 322 3223Google Scholar

    [39]

    Zhong X X, Soh W T, Phuoc N N, Liu Y, Ong C K 2015 J. Appl. Phys. 117 013906Google Scholar

    [40]

    Fu Y, Cheng X F, Yang Z 2006 Phys. Stat. Sol. (a) 203 963Google Scholar

    [41]

    Phuoca N N, Hungb L T, Ongb C K 2011 J. Alloy. Compd. 509 4010Google Scholar

  • 图 1  不同衬底层上沉积的FeCo薄膜的XRD图谱, 实线为拟合曲线

    Fig. 1.  XRD patterns of FeCo films deposited on different underlayers. Solid lines are the fitting curves.

    图 2  在不同衬底层上沉积的FeCo薄膜归一化的易轴磁滞回线

    Fig. 2.  Normalized easy axis hysteresis loops of FeCo films deposited on different underlayers.

    图 3  不同衬底层上沉积的FeCo薄膜的δM曲线

    Fig. 3.  δM curves of FeCo films deposited on different underlayers.

    图 4  在(a) Si基底、(b) Cu、(c) Co、(d) NiFe衬底层上沉积的FeCo薄膜的三维AFM图

    Fig. 4.  Three-dimensional AFM images of FeCo films deposite on (a) Si substrate, (b) Cu, (c) Co, and (d) NiFe underlayers.

    图 5  不同衬底层上沉积的FeCo薄膜的磁谱图

    Fig. 5.  Permeability spectra of FeCo films deposited on different underlayers.

    图 6  具有不同NiFe衬底层厚度的FeCo薄膜的XRD图谱(实线为拟合曲线)

    Fig. 6.  The XRD patterns of FeCo films with different NiFe underlayer thicknesses. Solid lines are the fitting curves.

    图 7  NiFe衬底层厚度为(a) 0, (b) 1, (c) 2.3, (d) 4.6, (e) 7, (f) 9.3 nm的FeCo薄膜的面内磁滞回线

    Fig. 7.  In-plane hysteresis loops of FeCo films with NiFe underlayer thickness of (a) 0, (b) 1, (c) 2.3, (d) 4.6, (e) 7, and (f) 9.3 nm.

    图 8  NiFe/FeCo薄膜的面内矫顽力和饱和磁化强度与NiFe衬底层厚度的关系

    Fig. 8.  Dependence of the in-plane coercivity and saturation magnetization of NiFe/FeCo films on the thickness of NiFe underlayers.

    图 9  NiFe衬底层厚度为(a) 1, (b) 2.3, (c) 4.6, (d) 9.3 nm的FeCo薄膜的磁谱图, 红线为基于LLG方程的拟合结果

    Fig. 9.  Permeability spectra of FeCo films with NiFe underlayer thickness of (a) 1, (b) 2.3, (c) 4.6, and (d) 9.3 nm. The red lines are the fitting results based on the LLG equation.

    图 10  (a) NiFe/FeCo薄膜的各向异性场和共振频率与NiFe衬底层厚度的关系; (b) NiFe/FeCo薄膜的阻尼系数和频率线宽与NiFe衬底层厚度的关系

    Fig. 10.  (a) Dependence of anisotropic field and resonance frequency of NiFe/FeCo films on thickness of NiFe underlayers; (b) dependence of damping coefficient and frequency linewidth of NiFe/FeCo films on thickness of NiFe underlayers.

    表 1  Si基底和不同衬底上沉积的FeCo薄膜的易轴矫顽力、剩磁比、应变、晶粒尺寸以及阻尼系数

    Table 1.  Coercivity of easy axis, remanent magnetization ratio, strain, grain size, and damping coefficient of FeCo films deposited on Si substrate and different underlayers.

    衬底层
    材料
    易轴矫顽力
    Hc/Oe
    剩磁比
    Mr/Ms
    应变
    ε/%
    晶粒尺寸
    D/nm
    阻尼
    α
    Si1120.8349.4±0.2
    Cu410.9490.597.5±0.60.045
    Co380.9510.277.5±0.20.025
    NiFe230.9910.296.9±0.20.015
    下载: 导出CSV

    表 2  不同衬底上沉积的FeCo薄膜的磁性总结

    Table 2.  Summary of magnetic properties of FeCo films deposited on different underlayers.

    材料厚度t/nmfr/GHzμiHc/Oe
    HceHch
    Cu/FeCo[21]10+100~33~15
    Cu/FeCoa7+133.134064118
    Co/FeCo[38]7.5+1003.04221.145.814.7
    Co/FeCoa7+133.052963813.3
    NiFe/FeCo[39]10+100~30~25
    NiFe/FeCoa7+132.83360238
    a 本文所研究的双层合金薄膜.
    下载: 导出CSV
    Baidu
  • [1]

    Li T Y, Liu X Y, Li J W, Pan L N, He A N, Dong Y Q 2022 J. Magn. Magn. Mater. 547 168777Google Scholar

    [2]

    Cronin D, Lordan D, Wei G, McCloskey P, Mathúna C O, Masood A 2020 J. Appl. Phys. 127 243903Google Scholar

    [3]

    Tang X L, Yu Y, Su H, Zhang H W, Zhong Z Y, Jing Y L 2018 J. Mater. Sci. 53 3573Google Scholar

    [4]

    Chai G, Phuoc N N, Ong C K 2012 Sci. Rep. 2 832Google Scholar

    [5]

    Masood A, McCloskey P, Mathúna C Ó, Kulkarni S 2017 J. Phys. Conf. Ser. 903 012050Google Scholar

    [6]

    Kurlyandskaya G V, Shcherbinin S V, Volchkov S O, Bhagat S M, Calle E, Pérez R, Vazquez M 2018 J. Magn. Magn. Mater. 459 154Google Scholar

    [7]

    Zheng F, Ma Z, Gao H, Pan F C, Li S T, Cao J W, Bai J M, Wei F L 2017 J. Mater. Sci. Mater. Electron. 28 17448Google Scholar

    [8]

    Yang F J, Min J J, Hui J H, Chen H B, Degao L, Li W J, Chen X Q, Yang C P 2017 J. Mater. Sci. Mater. Electron. 28 11733Google Scholar

    [9]

    Baco S, Abbas Q A, Hayward T J, Morley N A 2021 J. Alloy. Compd. 881 160549Google Scholar

    [10]

    Cabral L, Aragon F H, Villegas-Lelovsky L, Lima M P, Macedo W A A, Da Silva J L F 2019 ACS Appl. Mater. Inter. 11 1529Google Scholar

    [11]

    Vopsaroiu M, Georgieva M, Grundy P J, Fernandez G V, Manzoor S, Thwaites M J, O’Grady K 2005 J. Appl. Phys. 97 10N303Google Scholar

    [12]

    Vas’ko V A, Rantschler J O, Kief M T 2004 IEEE Trans. Magn. 40 2335Google Scholar

    [13]

    Xi L, Du J H, Zhou J J, Ma J H, Li X Y, Wang Z, Zuo Y L, Xue D S 2012 Thin Solid Films 520 5421Google Scholar

    [14]

    王璇, 郑富, 卢佳, 白建民, 王颖, 魏福林 2011 60 017505Google Scholar

    Wang X, Zheng F, Lu J, Bai J M, Wang Y, Wei F L 2011 Acta. Phys. Sin. 60 017505Google Scholar

    [15]

    Wang X, Zheng F, Liu Z Y, Liu X X, Wei D, Wei F L 2009 J. Appl. Phys. 105 07B714Google Scholar

    [16]

    Wu Y P, Yang Y, Yang Z H, Ma F S, Zong B Y, Ding J 2014 J. Appl. Phys. 116 093905Google Scholar

    [17]

    Xu F, Liao Z Q, Huang Q J, Ong C K, Li S D 2011 IEEE Trans. Magn. 47 3921Google Scholar

    [18]

    Acosta A, Fitzell K, Schneider J D, Dong C Z, Yao Z, Wang Y E, Carman G P, Sun N X, Chang J P 2020 Appl. Phys. Lett. 116 222404Google Scholar

    [19]

    Acosta A, Fitzell K, Schneider J D, Dong C Z, Yao Z, Sheil R, Wang Y E, Carman G P, Sun N X, Chang J P 2020 J. Appl. Phys. 128 013903Google Scholar

    [20]

    Fu Y, Miyao T, Cao J W, Yang Z, Matsumoto M, Liu X X, Morisako A 2007 J. Magn. Magn. Mater. 308 165Google Scholar

    [21]

    Li Y B, Li Z H, Liu X, Fu Y, Wei F L, Kamzin A S, Wei D 2010 J. Appl. Phys. 107 09A325Google Scholar

    [22]

    Sun N X, Wang S X 2002 J. Appl. Phys. 92 1477Google Scholar

    [23]

    Shimatsu T, Katada H, Watanabe I, Muraoka H, Nakamura Y 2003 IEEE Trans. Magn. 39 2365Google Scholar

    [24]

    Langford J I, Wilson A J C 1978 J. Appl. Cryst. 11 102Google Scholar

    [25]

    Scherrer P 1918 Nachr. Ges. Wiss. Göttingen 26 98

    [26]

    Herzer G 1990 IEEE Trans. Magn. 26 1397Google Scholar

    [27]

    Jiang H, Chen Y J, Chen L F, Huai Y M 2002 J. Appl. Phys. 91 6821Google Scholar

    [28]

    Inturi V R, Barnard J A 1996 J. Appl. Phys. 79 5904Google Scholar

    [29]

    Liu X X, Kanda H, Morisako A 2011 J. Phys. Conf. Ser. 266 012037Google Scholar

    [30]

    Jung H S, Doyle W D, Wittig J E, Al-Sharab J F, Bentley J 2002 Appl. Phys. Lett. 81 2415Google Scholar

    [31]

    O'Grady K, Laidler H 1999 J. Magn. Magn. Mater. 200 616Google Scholar

    [32]

    Wohlfarth E P 1958 J. Appl. Phys. 29 595Google Scholar

    [33]

    Henkel O 1964 Phys. Stat. Sol. 7 919Google Scholar

    [34]

    Gilbert T L 2004 IEEE Trans. Magn. 40 3443Google Scholar

    [35]

    Ge S H, Yao D S, Yamaguchi M, Yang X L, Zuo H P, Ishii T, Zhou D, Li F 2007 J. Phys. D Appl. Phys. 40 3660Google Scholar

    [36]

    Kuanr B K, Camley R E, Celinski Z 2005 J. Magn. Magn. Mater. 286 276Google Scholar

    [37]

    Ben Youssef J, Vukadinovic N, Billet D, Labrune M 2004 Phys. Rev. B 69 174402Google Scholar

    [38]

    Wu Y P, Han G C, Kong L B 2010 J. Magn. Magn. Mater. 322 3223Google Scholar

    [39]

    Zhong X X, Soh W T, Phuoc N N, Liu Y, Ong C K 2015 J. Appl. Phys. 117 013906Google Scholar

    [40]

    Fu Y, Cheng X F, Yang Z 2006 Phys. Stat. Sol. (a) 203 963Google Scholar

    [41]

    Phuoca N N, Hungb L T, Ongb C K 2011 J. Alloy. Compd. 509 4010Google Scholar

  • [1] 王文彪, 吴鹏, 乔亮, 吴伟, 涂成发, 杨晟宇, 李发伸. γ'-Fe4N软磁复合材料的磁性及损耗特性.  , 2023, 72(13): 137501. doi: 10.7498/aps.72.20222352
    [2] 姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽. 铁基软磁非晶/纳米晶合金研究进展及应用前景.  , 2018, 67(1): 016101. doi: 10.7498/aps.67.20171473
    [3] 曹成成, 范珏雯, 朱力, 孟洋, 王寅岗. 预退火时间对Fe80.8B10P8Cu1.2非晶合金微结构及磁性能的影响.  , 2017, 66(16): 167501. doi: 10.7498/aps.66.167501
    [4] 谢文球, 王自成, 罗积润, 刘青伦, 李现霞. 阶梯槽交错双栅慢波结构高频特性理论和模拟.  , 2014, 63(1): 014101. doi: 10.7498/aps.63.014101
    [5] 谢文球, 王自成, 罗积润, 刘青伦. 正弦波导高频特性分析.  , 2014, 63(4): 044101. doi: 10.7498/aps.63.044101
    [6] 白现臣, 张建德, 杨建华. 金属膜片和回流杆结构对大间隙速调管谐振腔高频特性的影响.  , 2013, 62(2): 024102. doi: 10.7498/aps.62.024102
    [7] 吴政, 王尘, 严光明, 刘冠洲, 李成, 黄巍, 赖虹凯, 陈松岩. 采用Al/TaN叠层电极提高Si基Ge PIN光电探测器的性能.  , 2012, 61(18): 186105. doi: 10.7498/aps.61.186105
    [8] 张雅楠, 王有骏, 孔令体, 李金富. Y对Fe-Si-B 合金非晶形成能力及软磁性能的影响.  , 2012, 61(15): 157502. doi: 10.7498/aps.61.157502
    [9] 王璇, 郑富, 芦佳, 白建民, 王颖, 魏福林. Al-O,C元素添加对FeCo合金薄膜磁性和频率特性的影响.  , 2011, 60(1): 017505. doi: 10.7498/aps.60.017505
    [10] 何俊, 魏彦玉, 宫玉彬, 段兆云, 王文祥. Ka波段曲折双脊波导行波管的研究.  , 2010, 59(4): 2843-2849. doi: 10.7498/aps.59.2843
    [11] 王冬, 陈代兵, 秦奋, 范植开. 双频磁绝缘线振荡器二维周期结构研究.  , 2009, 58(10): 6962-6972. doi: 10.7498/aps.58.6962
    [12] 李彦波, 刘曦, 李正华, 付煜, 卡姆津·阿·谢, 魏福林, 杨正. 界面对Fe65Co35薄膜微结构和软磁性的影响.  , 2009, 58(11): 7972-7976. doi: 10.7498/aps.58.7972
    [13] 王 冬, 陈代兵, 范植开, 邓景康. HEM11模磁绝缘线振荡器的高频分析.  , 2008, 57(8): 4875-4882. doi: 10.7498/aps.57.4875
    [14] 冯 春, 李宝河, 韩 刚, 滕 蛟, 姜 勇, 刘泉林, 于广华. Bi底层对FePt薄膜的影响.  , 2006, 55(12): 6656-6660. doi: 10.7498/aps.55.6656
    [15] 陆曹卫, 卢志超, 孙 克, 李德仁, 周少雄. 水雾化制备Fe74Al4Sn2P10C2B4Si4非晶合金粉末及其磁粉芯性能研究.  , 2006, 55(5): 2553-2556. doi: 10.7498/aps.55.2553
    [16] 杨全民, 王玲玲. 频率对纳米晶软磁合金磁性能影响的理论解释.  , 2005, 54(9): 4256-4262. doi: 10.7498/aps.54.4256
    [17] 邓联文, 江建军, 冯则坤, 张秀成, 何华辉. FeCoBSiO2磁性纳米颗粒膜的微波电磁特性.  , 2004, 53(12): 4359-4363. doi: 10.7498/aps.53.4359
    [18] 肖素红, 晁月盛, 周本濂. 连续超短电脉冲对非晶Fe_(78)Si_9B_(13)合金软磁性能的影响.  , 2000, 49(2): 288-292. doi: 10.7498/aps.49.288
    [19] 周 健, 荀 坤, 沈德芳, 夏国强, 郑玉祥, 陈良尧. (Pt3Co)1-xNix合金薄膜的结构、磁性和磁光特性研究.  , 1999, 48(13): 217-223. doi: 10.7498/aps.48.217
    [20] 刘湘华, 严 格, 崔利亚, 周少雄, 王崇愚, 郑 鹉, 王艾玲, 陈金昌. 纳米结构SmCo/FeCo多层薄膜的磁性.  , 1999, 48(13): 180-186. doi: 10.7498/aps.48.180.2
计量
  • 文章访问数:  4590
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 修回日期:  2022-04-08
  • 上网日期:  2022-07-22
  • 刊出日期:  2022-08-05

/

返回文章
返回
Baidu
map