-
二维材料由于其在力学、电学以及光学等领域的潜在应用而受到广泛关注. 基于第一性原理计算, 通过有序地排列SiH3SGeH3的Si-S-Ge骨架, 设计了一种全新的二维材料SiGeS. 单层SiGeS具有良好的能量、动力学以及热力学稳定性. SiGeS具有非常罕见的负泊松比. 此外, 单层SiGeS是间接带隙半导体, 其带隙值为1.95 eV. 在应变的作用下, SiGeS可转变为带隙范围为1.32—1.58 eV的直接带隙半导体, 可被应用在光学或半导体领域. 同时, 本征SiGeS拥有优异光吸收能力, 其最高光吸收系数可达约105 cm–1, 吸收范围主要在可见光到紫外波段. 在应变下, 光吸收范围可覆盖到整个红外波段. 这些有趣的性质使得SiGeS成为一种多功能材料, 有望被用于纳米电子、纳米力学以及纳米光学等领域.Two-dimensional (2D) materials have aroused tremendous interest due to their great potential applications in electronic, optical, and mechanical devices. We theoretically design a new 2D material SiGeS by regularly arranging the Si-S-Ge skeleton of SiH3SGeH3. Based on first-principles calculation, the structure, stability, electronic properties, mechanical properties, and optical properties of SiGeS are systematically investigated. Monolayer SiGeS is found to be energetically, dynamically, and thermally stable. Remarkably, the SiGeS displays a unique negative Poisson’s ratio. Besides, the SiGeS is an indirect-semiconductor with a band gap of 1.95 eV. The band gap can be modulated effectively by applying external strains. An indirect-to-direct band gap transition can be observed when the tensile strain along the x axial or biaxial direction is greater than +3%, which is highly desirable for applications in optical and semiconductor technology. Moreover, pristine SiGeS has a high absorption coefficient (~105 cm–1) in a visible-to-ultraviolet region. Under tensile strain along the x axial direction, the absorption edge of SiGeS has a red shift, which makes it cover the whole region of solar spectrum. These intriguing properties make the SiGeS a competitive multifunctional material for nanomechanic and optoelectronic applications.
-
Keywords:
- first-principle /
- two-dimensional material /
- negative Poisson’s ratio /
- optical properties
[1] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
Google Scholar
[2] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501
Google Scholar
[3] Dávila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002
Google Scholar
[4] Zhu F F, Chen W F, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020
Google Scholar
[5] Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z, Guo W 2016 Small 12 2942
Google Scholar
[6] Bai Y, Deng K, Kan E 2015 RSC Adv. 5 18352
Google Scholar
[7] Al Balushi Z Y, Wang K, Ghosh R K, Vila R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166
Google Scholar
[8] Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992
Google Scholar
[9] Mahmood J, Lee E K, Jung M, Shin D, Jeon I Y, Jung S M, Choi H J, Seo J M, Bae S Y, Sohn S D, Park N, Oh J H, Shin H J, Baek J B 2015 Nat. Commun. 6 6486
Google Scholar
[10] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M 2009 Nat. Mater. 8 76
Google Scholar
[11] Srinivasu K, Modak B, Ghosh S K 2014 J. Phys. Chem. C 118 26479
Google Scholar
[12] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[13] Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232
Google Scholar
[14] Demirci S, Avazlı N, Durgun E, Cahangirov S 2017 Phys. Rev. B 95 115409
Google Scholar
[15] Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475
Google Scholar
[16] Jiang J W, Park H S 2014 Nat. Commun. 5 4727
Google Scholar
[17] Zhuang H L, Singh A K, Hennig R G 2013 Phys. Rev. B 87 165415
Google Scholar
[18] Wang H, Li X, Yang J 2016 ChemPhysChem 17 2100
Google Scholar
[19] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451
Google Scholar
[20] Liu H, Du Y, Deng Y, Ye P D 2015 Chem. Soc. Rev. 44 2732
Google Scholar
[21] Sun M, Schwingenschlögl U 2020 Phys. Rev. Appl. 14 044015
Google Scholar
[22] Chae K, Son Y W 2019 Nano Lett. 19 2694
Google Scholar
[23] Gao Z, Dong X, Li N, Ren J 2017 Nano Lett. 17 772
Google Scholar
[24] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312
Google Scholar
[25] Wang B, König M, Bromley C J, Yoon B, Treanor M J, Garrido Torres J A, Caffio M, Grillo F, Früchtl H, Richardson N V, Esch F, Heiz U, Landman U, Schaub R 2017 J. Phys. Chem. C 121 9413
Google Scholar
[26] Khan M H, Moradi M, Dakhchoune M, Rezaei M, Huang S Q, Zhao J, Agrawal K V 2019 Carbon 153 458
Google Scholar
[27] Tian Y, Hu Z, Yang Y, Wang X, Chen X, Xu H, Wu Q, Ji W, Chen Y 2004 J. Am. Chem. Soc. 126 1180
Google Scholar
[28] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K, Fasel R 2010 Nature 466 470
Google Scholar
[29] Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F 2013 ACS Nano 7 6123
Google Scholar
[30] Park J H, Park J C, Yun S J, Kim H, Luong D H, Kim S M, Choi S H, Yang W, Kong J, Kim K K, Lee Y H 2014 ACS Nano 8 8520
Google Scholar
[31] Beniwal S, Hooper J, Miller D P, Costa P S, Chen G, Liu S Y, Dowben P A, Sykes E C, Zurek E, Enders A 2017 ACS Nano 11 2486
Google Scholar
[32] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320
Google Scholar
[33] Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538
Google Scholar
[34] Liu B, Fathi M, Chen L, Abbas A, Ma Y, Zhou C 2015 ACS Nano 9 6119
Google Scholar
[35] Finch M A, Van Dyke C H 1975 Inorg. Chem. 14 136
Google Scholar
[36] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717
Google Scholar
[37] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[38] Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005
Google Scholar
[39] Hamann D R, Schluter M, Chiang C 1979 Phys. Rev. Lett. 43 1494
Google Scholar
[40] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207
Google Scholar
[41] Savrasov S Y, Savrasov D Y 1996 Phys. Rev. B Condens. Matter Mater. Phys. 54 16487
Google Scholar
[42] Nose S 1984 J. Chem. Phys. 81 511
Google Scholar
[43] Hoover W G 1985 Phys. Rev. A 31 1695
Google Scholar
[44] Yang L M, Bacic V, Popov I A, Boldyrev A I, Heine T, Frauenheim T, Ganz E 2015 J. Am. Chem. Soc. 137 2757
Google Scholar
[45] Huang L F, Gong P L, Zeng Z 2014 Phys. Rev. B:Condens. Matter Mater. Phys. 90 045409
Google Scholar
[46] Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L 2014 Nano Lett. 14 6393
Google Scholar
[47] Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B 82 235414
Google Scholar
[48] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385
Google Scholar
[49] Mortazavi B, Rahaman O, Makaremi M, Dianat A, Cuniberti G, Rabczuk T 2017 Physica E 87 228
Google Scholar
[50] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513
Google Scholar
[51] Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U. S. A. 112 2372
Google Scholar
[52] Yang J H, Zhang Y, Yin W J, Gong X G, Yakobson B I, Wei S H 2016 Nano Lett. 16 1110
Google Scholar
[53] Li F, Liu X, Wang Y, Li Y 2016 J. Mater. Chem. C 4 2155
Google Scholar
[54] Zhu G L, Ye X J, Liu C S 2019 Nanoscale 11 22482
Google Scholar
[55] Zhu G L, Ye X J, Liu C S, Yan X H 2020 Nanoscale Adv. 2 2835
Google Scholar
[56] Lang H, Zhang S, Liu Z 2016 Phys. Rev. B 94 235306
Google Scholar
[57] Rawat A, Jena N, Dimple D, De Sarkar A 2018 J. Mater. Chem. A 6 8693
Google Scholar
[58] Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131
Google Scholar
[59] Miao N, Xu B, Bristowe N C, Zhou J, Sun Z 2017 J. Am. Chem. Soc. 139 11125
Google Scholar
[60] Lin J H, Zhang H, Cheng X L, Miyamoto Y 2017 Phys. Rev. B 96 035438
Google Scholar
[61] Shirayama M, Kadowaki H, Miyadera T, Sugita T, Tamakoshi M, Kato M, Fujiseki T, Murata D, Hara S, Murakami T N, Fujimoto S, Chikamatsu M, Fujiwara H 2016 Phys. Rev. Appl. 5 014012
Google Scholar
[62] Luo X, Wang G, Huang Y, Wang B, Yuan H, Chen H 2017 Phys. Chem. Chem. Phys. 19 28216
Google Scholar
[63] Lu P, Wu L, Yang C, Liang D, Quhe R, Guan P, Wang S 2017 Sci. Rep. 7 3912
Google Scholar
-
图 1 (a) SiH3SGeH3分子的结构; (b) 优化后SiGeS结构的俯视图和侧视图, 其中虚线矩形框代表其原胞; (c) SiGeS的声子谱; (d) 1000 K下SiGeS的总能量变化和10 ps后的结构快照
Fig. 1. (a) Structure of SiH3SGeH3 molecule; (b) top and side views of the optimized structure of SiGeS, where the dashed rectangle represents the unit cell; (c) phono spectrum of SiGeS; (d) total energy evolution of SiGeS at 1000 K and the snapshot of the structure after 10 ps.
图 3 (a) 单层SiGeS在沿x轴拉伸应变下的结构变化, 其中施加应变与结构变化分别使用蓝色实线箭头及紫色虚线箭头表示; 单层SiGeS在沿(b) x轴及(c) y轴应变下的机械响应
Fig. 3. (a) Structure evolution of monolayer SiGeS under tensile strain along x. The applied strain and the structure evolution are marked by blue solid and purple dashed arrows, respectively; mechanical response of SiGeS under the strain along (b) x and (c) y
表 1 SiGeS的有效质量m*, 形变势常数
$\left|{{E}}_{\text{1}}\right|$ , 面内刚度C2D及载流子迁移率µTable 1. Effective mass m*, deformation potential constant
$\left|{{E}}_{\text{1}}\right|$ , in-plane stiffness C2D, and carrier mobility µ of SiGeS.Direction Carrier
typem*/m0 $\left|{{E} }_{\text{1} }\right|$/
eVC2D/
(N·m–1)µ/
(cm2·V–1·s–1)x Electron 0.87 9.02 89.73 22.24 Hole 11.12 0.95 3.02 y Electron 1.10 9.80 63.09 15.41 Hole 2.53 5.84 6.38 -
[1] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
Google Scholar
[2] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501
Google Scholar
[3] Dávila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002
Google Scholar
[4] Zhu F F, Chen W F, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020
Google Scholar
[5] Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z, Guo W 2016 Small 12 2942
Google Scholar
[6] Bai Y, Deng K, Kan E 2015 RSC Adv. 5 18352
Google Scholar
[7] Al Balushi Z Y, Wang K, Ghosh R K, Vila R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166
Google Scholar
[8] Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992
Google Scholar
[9] Mahmood J, Lee E K, Jung M, Shin D, Jeon I Y, Jung S M, Choi H J, Seo J M, Bae S Y, Sohn S D, Park N, Oh J H, Shin H J, Baek J B 2015 Nat. Commun. 6 6486
Google Scholar
[10] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M 2009 Nat. Mater. 8 76
Google Scholar
[11] Srinivasu K, Modak B, Ghosh S K 2014 J. Phys. Chem. C 118 26479
Google Scholar
[12] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[13] Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232
Google Scholar
[14] Demirci S, Avazlı N, Durgun E, Cahangirov S 2017 Phys. Rev. B 95 115409
Google Scholar
[15] Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475
Google Scholar
[16] Jiang J W, Park H S 2014 Nat. Commun. 5 4727
Google Scholar
[17] Zhuang H L, Singh A K, Hennig R G 2013 Phys. Rev. B 87 165415
Google Scholar
[18] Wang H, Li X, Yang J 2016 ChemPhysChem 17 2100
Google Scholar
[19] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 10451
Google Scholar
[20] Liu H, Du Y, Deng Y, Ye P D 2015 Chem. Soc. Rev. 44 2732
Google Scholar
[21] Sun M, Schwingenschlögl U 2020 Phys. Rev. Appl. 14 044015
Google Scholar
[22] Chae K, Son Y W 2019 Nano Lett. 19 2694
Google Scholar
[23] Gao Z, Dong X, Li N, Ren J 2017 Nano Lett. 17 772
Google Scholar
[24] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312
Google Scholar
[25] Wang B, König M, Bromley C J, Yoon B, Treanor M J, Garrido Torres J A, Caffio M, Grillo F, Früchtl H, Richardson N V, Esch F, Heiz U, Landman U, Schaub R 2017 J. Phys. Chem. C 121 9413
Google Scholar
[26] Khan M H, Moradi M, Dakhchoune M, Rezaei M, Huang S Q, Zhao J, Agrawal K V 2019 Carbon 153 458
Google Scholar
[27] Tian Y, Hu Z, Yang Y, Wang X, Chen X, Xu H, Wu Q, Ji W, Chen Y 2004 J. Am. Chem. Soc. 126 1180
Google Scholar
[28] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K, Fasel R 2010 Nature 466 470
Google Scholar
[29] Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F 2013 ACS Nano 7 6123
Google Scholar
[30] Park J H, Park J C, Yun S J, Kim H, Luong D H, Kim S M, Choi S H, Yang W, Kong J, Kim K K, Lee Y H 2014 ACS Nano 8 8520
Google Scholar
[31] Beniwal S, Hooper J, Miller D P, Costa P S, Chen G, Liu S Y, Dowben P A, Sykes E C, Zurek E, Enders A 2017 ACS Nano 11 2486
Google Scholar
[32] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320
Google Scholar
[33] Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538
Google Scholar
[34] Liu B, Fathi M, Chen L, Abbas A, Ma Y, Zhou C 2015 ACS Nano 9 6119
Google Scholar
[35] Finch M A, Van Dyke C H 1975 Inorg. Chem. 14 136
Google Scholar
[36] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717
Google Scholar
[37] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[38] Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005
Google Scholar
[39] Hamann D R, Schluter M, Chiang C 1979 Phys. Rev. Lett. 43 1494
Google Scholar
[40] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207
Google Scholar
[41] Savrasov S Y, Savrasov D Y 1996 Phys. Rev. B Condens. Matter Mater. Phys. 54 16487
Google Scholar
[42] Nose S 1984 J. Chem. Phys. 81 511
Google Scholar
[43] Hoover W G 1985 Phys. Rev. A 31 1695
Google Scholar
[44] Yang L M, Bacic V, Popov I A, Boldyrev A I, Heine T, Frauenheim T, Ganz E 2015 J. Am. Chem. Soc. 137 2757
Google Scholar
[45] Huang L F, Gong P L, Zeng Z 2014 Phys. Rev. B:Condens. Matter Mater. Phys. 90 045409
Google Scholar
[46] Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L 2014 Nano Lett. 14 6393
Google Scholar
[47] Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B 82 235414
Google Scholar
[48] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385
Google Scholar
[49] Mortazavi B, Rahaman O, Makaremi M, Dianat A, Cuniberti G, Rabczuk T 2017 Physica E 87 228
Google Scholar
[50] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513
Google Scholar
[51] Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U. S. A. 112 2372
Google Scholar
[52] Yang J H, Zhang Y, Yin W J, Gong X G, Yakobson B I, Wei S H 2016 Nano Lett. 16 1110
Google Scholar
[53] Li F, Liu X, Wang Y, Li Y 2016 J. Mater. Chem. C 4 2155
Google Scholar
[54] Zhu G L, Ye X J, Liu C S 2019 Nanoscale 11 22482
Google Scholar
[55] Zhu G L, Ye X J, Liu C S, Yan X H 2020 Nanoscale Adv. 2 2835
Google Scholar
[56] Lang H, Zhang S, Liu Z 2016 Phys. Rev. B 94 235306
Google Scholar
[57] Rawat A, Jena N, Dimple D, De Sarkar A 2018 J. Mater. Chem. A 6 8693
Google Scholar
[58] Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131
Google Scholar
[59] Miao N, Xu B, Bristowe N C, Zhou J, Sun Z 2017 J. Am. Chem. Soc. 139 11125
Google Scholar
[60] Lin J H, Zhang H, Cheng X L, Miyamoto Y 2017 Phys. Rev. B 96 035438
Google Scholar
[61] Shirayama M, Kadowaki H, Miyadera T, Sugita T, Tamakoshi M, Kato M, Fujiseki T, Murata D, Hara S, Murakami T N, Fujimoto S, Chikamatsu M, Fujiwara H 2016 Phys. Rev. Appl. 5 014012
Google Scholar
[62] Luo X, Wang G, Huang Y, Wang B, Yuan H, Chen H 2017 Phys. Chem. Chem. Phys. 19 28216
Google Scholar
[63] Lu P, Wu L, Yang C, Liang D, Quhe R, Guan P, Wang S 2017 Sci. Rep. 7 3912
Google Scholar
计量
- 文章访问数: 4789
- PDF下载量: 117
- 被引次数: 0