搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向激光等离子体尾波加速的毛细管放电实验研究

祝昕哲 李博原 刘峰 李建龙 毕择武 鲁林 远晓辉 闫文超 陈民 陈黎明 盛政明 张杰

引用本文:
Citation:

面向激光等离子体尾波加速的毛细管放电实验研究

祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰

Experimental study on capillary discharge for laser plasma wake acceleration

Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie
PDF
HTML
导出引用
  • 具有合适径向密度分布的等离子体通道可以用于超短超强激光导引, 这使得等离子体通道在激光尾波加速中有着重要的应用. 本文介绍了在上海交通大学激光等离子体实验室开展的毛细管放电和光导引实验. 通过光谱展宽法测量了充氦气的放电毛细管中的等离子体密度分布, 在长度为3 cm、内径为300 μm的毛细管中实现了轴向均匀, 径向呈抛物线型的等离子体密度分布. 通过改变放电延时和喷气时长, 确定和优化了产生等离子体通道的参数区间, 得到的最大通道深度为28 μm, 与实验中使用的激光焦斑半径匹配. 在此基础之上, 开展了不同能量的激光脉冲在放电等离子体通道中的导引研究, 结果发现当通道深度与焦斑半径匹配时, 激光可以不散焦地在通道中传输, 实现激光导引. 这项研究为未来的激光尾波级联加速和锁相加速等研究奠定了基础.
    Preformed plasma channels play important roles in many applications, such as laser wakefield acceleration, plasma lens, and so on. Laser pulses can be well guided when the radial density distribution of the plasma channel has a parabolic profile and it is matched with the laser focus. Discharging a gas-filled capillary is a possible way to form such plasma channels. In this work, we report the capillary discharging and laser guiding experiments performed in the Laboratory for Laser Plasmas at Shanghai Jiao Tong University. The plasma density distributions in the Helium-filled discharged capillary are measured by using the spectral broadening method. In a capillary with a length of 3 cm and a diameter of 300 μm, the plasma density profile is observed to be uniformly distributed along the axial direction and have a parabolic profile along the radial direction. Parameters for plasma channel generation are scanned. The deepest channel depth obtained is 28 μm, which is close to the focal spot radius of the laser used in the experiment. Laser guidance in the plasma channel is also studied. The results show that the laser can maintain its focus and continuously propagate when the channel depth matches the focal spot, indicating that the well guiding of the laser pulse by the preformed plasma channel is obtained. These studies may serve as the ground work for the future studies, such as staged laser wakefield acceleration and phase-locked wakefield acceleration.
      通信作者: 陈民, minchen@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11991074, 11774227, 11905129, 12175140, 12135009)、科学挑战计划(批准号: TZ2018005)和中国科学院战略性先导科技专项(批准号: XDA25010500)资助的课题.
      Corresponding author: Chen Min, minchen@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11991074, 11774227, 11905129, 12175140, 12135009), the Science Challenge Project of China (Grant No. TZ2018005), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25010500).
    [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [3]

    Chen M, Liu F, Li B Y, Weng S M, Chen L M, Sheng Z M, Zhang J 2020 High Power Laser and Particle Beams 32 092001Google Scholar

    [4]

    Steinke S, van Tilborg J, Benedetti C, Geddes C G R, Schroeder C B, Daniels J, Swanson K K, Gonsalves A J, Nakamura K, Matlis N H, Shaw B H, Esarey E, Leemans W P 2016 Nature 530 190Google Scholar

    [5]

    Luo J, Chen M, Wu W Y, Weng S M, Sheng Z G, Schroeder C B, Jaroszynski D A, Esarey E, Leemans W P, Mori W B, Zhang J 2018 Phys. Rev. Lett. 120 154801Google Scholar

    [6]

    Rittershofer W, Schroeder C B, Esarey E, Gruner F J, Leemans W P 2010 Phys. Plasmas 17 063104Google Scholar

    [7]

    Li W T, Liu J S, Wang W T, Zhang Z J, Chen Q, Tian Y, Qi R, Yu C H, Wang C, Tajima T, Li R X, Xu Z Z 2014 Appl. Phys. Lett. 104 093510Google Scholar

    [8]

    Sadler J D, Arran C, Li H, Flippo K A 2020 Phys. Rev. Accel. Beams 23 021303Google Scholar

    [9]

    Palastro J P, Shaw J L, Franke P, Ramsey D, Simpson T T, Froula D H 2020 Phys. Rev. Lett. 124 134802Google Scholar

    [10]

    Palastro J P, Malaca B, Vieira J, Ramsey D, Simpson T T, Franke P, Shaw J L, Froula D H 2021 Phys. Plasmas 28 013109Google Scholar

    [11]

    Steinhauer L C, Ahlstrom H G 1971 Phys. Fluids 14 1109Google Scholar

    [12]

    Sprangle P, Esarey E, Krall J, Joyce G 1992 Phys. Rev. Lett. 69 2200Google Scholar

    [13]

    Zigler A, Ehrlich Y, Cohen C, Krall J, Sprangle P 1996 J. Opt. Soc. Am. B 13 68Google Scholar

    [14]

    Hooker S M, Spence D J, Smith R A 2000 J. Opt. Soc. Am. B 17 90Google Scholar

    [15]

    Gonsalves A J, Rowlands-Rees T P, Broks B H P, van der Mullen J J A M, Hooker S M 2007 Phys. Rev. Lett. 98 025002Google Scholar

    [16]

    Esarey E, Sprangle P, Krall J, Ting A, Joyce G 1993 Phys. Fluids B:Plasma Physics 5 2690Google Scholar

    [17]

    Nakamurac K, Naglerd B, Tóth Cs, Geddes C G R, Schroeder C B, Gonsalvesf A J, Hooker S M, Esarey E, Leemanse W P 2007 Phys. Plasmas 14 056708Google Scholar

    [18]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Tóth Cs, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [19]

    Miao B, Feder L, Shrock J E, Goffin A, Milchberg H M 2020 Phys. Rev. Lett. 125 074801Google Scholar

    [20]

    Ta Phuoc K, Corde S, Shah R, Albert F, Fitour R, Rousseau J P, Burgy F, Mercier B, Rousse A 2006 Phys. Rev. Lett. 97 225002Google Scholar

    [21]

    Katsouleas S W T, Su J D J 1987 Part. Accel 22 81

    [22]

    Schroeder C B, Benedetti C, Esarey E, Leemans W P 2013 Phys. Plasmas 20 123115Google Scholar

    [23]

    Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A, Silva L O 2007 Phys. Rev. Spec. Top. -Ac 10 061301

    [24]

    Esarey E, Krall J, Sprangle P 1994 Phys. Rev. Lett. 72 2887Google Scholar

    [25]

    Hosokai T, Kando M, Dewa H, Kotaki H, Kondo S 2000 Optics Lett. 25 10Google Scholar

    [26]

    Ehrlich Y, Cohen C, Kaganovich D, Zigler A, Hubbard R F, Sprangle P, Esarey E 1998 J. Opt. Soc. Am. B 15 2416Google Scholar

    [27]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 7008

    [28]

    Gaul E W, Le Blanc S P, Rundquist A R, Zgadzaj R, Langhoff H, Downer M C 2000 Appl. Phys. Lett. 77 4112Google Scholar

    [29]

    Griem H R, Baranger M, Kolb A C, Oertel G 1962 Phys. Rev. 125 177Google Scholar

    [30]

    Nikiforov A Y, Leys C, Gonzalez M A, Walsh J L 2015 Plasma Sources Sci. Technol. 24 034001Google Scholar

    [31]

    Hiromitsu T, Nadezhda B, Pavel S, Takashi K, Toru S, Takeshi H, Noboru Y, Ryosuke K 2011 J. Appl. Phys. 109 053304Google Scholar

    [32]

    Guillaume E, Döpp A, Thaury C, Ta Phuoc K, Lifschitz A, Grittani G, Goddet J P, Tafzi A, Chou S W, Veisz L, Malka V 2015 Phys. Rev. Lett. 115 155002Google Scholar

    [33]

    Zhu X Z, Chen M, Li B Y, Liu F, Ge X L, Sheng Z M, Zhang J 2022 Phys. Plasmas 29 013101Google Scholar

    [34]

    Wang W T, Feng K, Ke L T, Yu C H, Xu Y, Qi R, Chen Y, Qin Z Y, Zhang Z J, Fang M, Liu J Q, Jiang K N, Wang H, Wang C, Yang X J, Wu F X, Leng Y X, Liu J S, Li R X, Xu Z Z 2021 Nature 595 516Google Scholar

  • 图 1  上海交通大学激光等离子体实验室用于激光尾波加速的放电毛细管装置

    Fig. 1.  Discharged capillary for laser wakefield accelerator at the Laboratory for Laser Plasmas, SJTU.

    图 2  毛细管的放电电路和电流 (a) 毛细管放电电路图; (b) 典型的放电电流

    Fig. 2.  Capillary discharge circuit and current: (a) Discharge circuit; (b) typical discharge current.

    图 3  使用Stark展宽标定He放电等离子体的密度 (a) 氦等离子体的谱线; (b) 谱线在587.6 nm附近的展宽; (c) 在放电电压10 kV, 背压15 psi (1 psi = 6.89476 × 103 Pa)时测量到的等离子体密度

    Fig. 3.  Measuring the density of Helium plasma with Stark broadening: (a) Spectra of Helium plasma; (b) spectra broadening at 587.6 nm; (c) plasma density at 10 kV and 15 psi backpressure.

    图 4  在放电电压10 kV, 充气背压5 psi 下毛细管的轴向放电光谱和密度 (a)探测器示意图; (b)轴向放电光谱; (c)轴向等离子体密度

    Fig. 4.  On-axis discharge spectrum and density distribution of the capillary at 10 kV and 5 psi: (a) Schematic of the detector; (b) the axial spectra along the capillary; (c) the axial plasma density.

    图 5  在15 kV下毛细管放电时的端面光谱和径向等离子体密度分布 (a) 500 μm 毛细管的径向光谱; (b) 300 μm 毛细管的径向光谱; (c) 500 μm毛细管的径向密度分布; (d) 300 μm毛细管的径向密度分布

    Fig. 5.  End-face spectra detected during the discharge and the radial plasma density distribution at 15 kV: (a) Spectra of 500 μm capillary; (b) spectra of 300 μm capillary; (c) radial density distribution of 500 μm capillary; (d) radial density distribution of 300 μm capillary.

    图 6  300 μm口径毛细管的通道半径和中轴线密度随放电时间和背压的演化 (a) $ {r}_{0} $$ {n}_{0} $随时间的演化; (b) $ {r}_{0} $$ {n}_{0} $随背压的演化

    Fig. 6.  Evolutions of the channel radius and the on-axis density in the capillary with 300 μm inner diameter: (a) $ {r}_{0} $ and $ {n}_{0} $ evolution with time; (b) $ {r}_{0} $ and $ {n}_{0} $ evolution with backpressure.

    图 7  毛细管的光导引实验装置示意图

    Fig. 7.  Schematic of laser guiding by discharged capillary experiment.

    图 8  放电毛细管导引小能量激光 (a) 毛细管前的激光焦斑; (b) 正中心入射穿过通道的激光光斑; (c) 偏轴10 μm 入射穿过通道的激光光斑; (d) 偏轴20 μm 入射穿过通道的激光光斑

    Fig. 8.  Small energy laser guiding by discharged capillary: (a) Laser spot before capillary; (b) laser spot after capillary for on-axis incidence; (c) laser spot after capillary for 10 μm off-axis incidence; (d) laser spot after capillary for 20 μm off-axis incidence.

    图 9  经过毛细管导引后的大能量(3 J)激光光斑

    Fig. 9.  Spot of capillary guided laser with energy of 3 J.

    Baidu
  • [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [3]

    Chen M, Liu F, Li B Y, Weng S M, Chen L M, Sheng Z M, Zhang J 2020 High Power Laser and Particle Beams 32 092001Google Scholar

    [4]

    Steinke S, van Tilborg J, Benedetti C, Geddes C G R, Schroeder C B, Daniels J, Swanson K K, Gonsalves A J, Nakamura K, Matlis N H, Shaw B H, Esarey E, Leemans W P 2016 Nature 530 190Google Scholar

    [5]

    Luo J, Chen M, Wu W Y, Weng S M, Sheng Z G, Schroeder C B, Jaroszynski D A, Esarey E, Leemans W P, Mori W B, Zhang J 2018 Phys. Rev. Lett. 120 154801Google Scholar

    [6]

    Rittershofer W, Schroeder C B, Esarey E, Gruner F J, Leemans W P 2010 Phys. Plasmas 17 063104Google Scholar

    [7]

    Li W T, Liu J S, Wang W T, Zhang Z J, Chen Q, Tian Y, Qi R, Yu C H, Wang C, Tajima T, Li R X, Xu Z Z 2014 Appl. Phys. Lett. 104 093510Google Scholar

    [8]

    Sadler J D, Arran C, Li H, Flippo K A 2020 Phys. Rev. Accel. Beams 23 021303Google Scholar

    [9]

    Palastro J P, Shaw J L, Franke P, Ramsey D, Simpson T T, Froula D H 2020 Phys. Rev. Lett. 124 134802Google Scholar

    [10]

    Palastro J P, Malaca B, Vieira J, Ramsey D, Simpson T T, Franke P, Shaw J L, Froula D H 2021 Phys. Plasmas 28 013109Google Scholar

    [11]

    Steinhauer L C, Ahlstrom H G 1971 Phys. Fluids 14 1109Google Scholar

    [12]

    Sprangle P, Esarey E, Krall J, Joyce G 1992 Phys. Rev. Lett. 69 2200Google Scholar

    [13]

    Zigler A, Ehrlich Y, Cohen C, Krall J, Sprangle P 1996 J. Opt. Soc. Am. B 13 68Google Scholar

    [14]

    Hooker S M, Spence D J, Smith R A 2000 J. Opt. Soc. Am. B 17 90Google Scholar

    [15]

    Gonsalves A J, Rowlands-Rees T P, Broks B H P, van der Mullen J J A M, Hooker S M 2007 Phys. Rev. Lett. 98 025002Google Scholar

    [16]

    Esarey E, Sprangle P, Krall J, Ting A, Joyce G 1993 Phys. Fluids B:Plasma Physics 5 2690Google Scholar

    [17]

    Nakamurac K, Naglerd B, Tóth Cs, Geddes C G R, Schroeder C B, Gonsalvesf A J, Hooker S M, Esarey E, Leemanse W P 2007 Phys. Plasmas 14 056708Google Scholar

    [18]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Tóth Cs, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [19]

    Miao B, Feder L, Shrock J E, Goffin A, Milchberg H M 2020 Phys. Rev. Lett. 125 074801Google Scholar

    [20]

    Ta Phuoc K, Corde S, Shah R, Albert F, Fitour R, Rousseau J P, Burgy F, Mercier B, Rousse A 2006 Phys. Rev. Lett. 97 225002Google Scholar

    [21]

    Katsouleas S W T, Su J D J 1987 Part. Accel 22 81

    [22]

    Schroeder C B, Benedetti C, Esarey E, Leemans W P 2013 Phys. Plasmas 20 123115Google Scholar

    [23]

    Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A, Silva L O 2007 Phys. Rev. Spec. Top. -Ac 10 061301

    [24]

    Esarey E, Krall J, Sprangle P 1994 Phys. Rev. Lett. 72 2887Google Scholar

    [25]

    Hosokai T, Kando M, Dewa H, Kotaki H, Kondo S 2000 Optics Lett. 25 10Google Scholar

    [26]

    Ehrlich Y, Cohen C, Kaganovich D, Zigler A, Hubbard R F, Sprangle P, Esarey E 1998 J. Opt. Soc. Am. B 15 2416Google Scholar

    [27]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 7008

    [28]

    Gaul E W, Le Blanc S P, Rundquist A R, Zgadzaj R, Langhoff H, Downer M C 2000 Appl. Phys. Lett. 77 4112Google Scholar

    [29]

    Griem H R, Baranger M, Kolb A C, Oertel G 1962 Phys. Rev. 125 177Google Scholar

    [30]

    Nikiforov A Y, Leys C, Gonzalez M A, Walsh J L 2015 Plasma Sources Sci. Technol. 24 034001Google Scholar

    [31]

    Hiromitsu T, Nadezhda B, Pavel S, Takashi K, Toru S, Takeshi H, Noboru Y, Ryosuke K 2011 J. Appl. Phys. 109 053304Google Scholar

    [32]

    Guillaume E, Döpp A, Thaury C, Ta Phuoc K, Lifschitz A, Grittani G, Goddet J P, Tafzi A, Chou S W, Veisz L, Malka V 2015 Phys. Rev. Lett. 115 155002Google Scholar

    [33]

    Zhu X Z, Chen M, Li B Y, Liu F, Ge X L, Sheng Z M, Zhang J 2022 Phys. Plasmas 29 013101Google Scholar

    [34]

    Wang W T, Feng K, Ke L T, Yu C H, Xu Y, Qi R, Chen Y, Qin Z Y, Zhang Z J, Fang M, Liu J Q, Jiang K N, Wang H, Wang C, Yang X J, Wu F X, Leng Y X, Liu J S, Li R X, Xu Z Z 2021 Nature 595 516Google Scholar

  • [1] 龙欣宇, 王佩佩, 安红海, 熊俊, 谢志勇, 方智恒, 孙今人, 王琛. 宽带激光辐照平面薄膜靶的近前向散射.  , 2024, 73(12): 125202. doi: 10.7498/aps.73.20231613
    [2] 李天成, 章晓海, 盛正卯. 激光入射双层等离子体靶产生的表面等离子体波及应用.  , 2023, 72(4): 045201. doi: 10.7498/aps.72.20221305
    [3] 王琛, 安红海, 熊俊, 方智恒, 季雨, 练昌旺, 谢志勇, 郭尔夫, 贺芝宇, 曹兆栋, 王伟, 闫锐, 裴文兵. 皮秒激光驱动下的背向受激布里渊散射的光谱结构.  , 2021, 70(19): 195202. doi: 10.7498/aps.70.20210568
    [4] 祝昕哲, 刘维媛, 陈民. 锐真空-等离子体边界倾角对激光尾波场加速中电子注入的影响.  , 2020, 69(3): 035201. doi: 10.7498/aps.69.20191332
    [5] 王伟民, 张亮亮, 李玉同, 盛政明, 张杰. 激光在大气中驱动的强太赫兹辐射的理论和实验研究.  , 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [6] 何民卿, 董全力, 盛政明, 张杰. 激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究.  , 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [7] 邹长林, 叶文华, 卢新培. 一维动理学数值模拟激光与等离子体的相互作用.  , 2014, 63(8): 085207. doi: 10.7498/aps.63.085207
    [8] 孟祥富, 王琛, 安红海, 贾果, 方智恒, 周华珍, 孙今人, 王伟, 傅思祖. 驱动激光束间相干性以及对背向散射影响的研究.  , 2012, 61(18): 185202. doi: 10.7498/aps.61.185202
    [9] 张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰. 激光等离子体相互作用的受激拉曼散射饱和效应.  , 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [10] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究.  , 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [11] 栾仕霞, 张秋菊, 桂维玲. 交叉传播激光脉冲与等离子体相互作用产生的等离子体密度光栅.  , 2008, 57(11): 7030-7037. doi: 10.7498/aps.57.7030
    [12] 刘占军, 朱少平, 曹莉华, 郑春阳. 利用一维Vlasov和Maxwell方程模拟激光等离子体相互作用.  , 2007, 56(12): 7084-7089. doi: 10.7498/aps.56.7084
    [13] 刘占军, 郑春阳, 曹莉华, 李 斌, 朱少平. 次稠密等离子体对激光与锥形靶相互作用的影响.  , 2006, 55(1): 304-309. doi: 10.7498/aps.55.304
    [14] 张 翼, 李玉同, 张 杰, 陈正林, R. Kodama. 超强激光与等离子体相互作用产生中子的计算.  , 2005, 54(10): 4799-4802. doi: 10.7498/aps.54.4799
    [15] 张家泰, 刘松芬, 胡北来. 强激光部分离化等离子体成丝不稳定性.  , 2003, 52(7): 1668-1671. doi: 10.7498/aps.52.1668
    [16] 赖国俊, 季沛勇. 基于激光等离子体的光子加速.  , 2000, 49(12): 2399-2403. doi: 10.7498/aps.49.2399
    [17] 李玉同, 张 杰, 陈黎明, 夏江帆, 腾 浩, 魏志义, 江文勉. 对飞秒激光等离子体相互作用中横向箍缩的观察.  , 2000, 49(7): 1400-1403. doi: 10.7498/aps.49.1400
    [18] 李毅. 热等离子体中的尾波加速.  , 1996, 45(4): 601-607. doi: 10.7498/aps.45.601
    [19] 马锦秀, 徐至展. 双频强激光与等离子体相互作用中的双稳态效应.  , 1989, 38(5): 706-713. doi: 10.7498/aps.38.706
    [20] 徐至展, 殷光裕, 张燕珍, 林康春. 激光等离子体相互作用中的受激布里渊散射.  , 1983, 32(4): 481-489. doi: 10.7498/aps.32.481
计量
  • 文章访问数:  5308
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 修回日期:  2022-01-17
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-05-05

/

返回文章
返回
Baidu
map