搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于同位素链核电荷半径的新关系

焦宝宝

引用本文:
Citation:

基于同位素链核电荷半径的新关系

焦宝宝

New relation for nuclear charge radius based on isotope chain

Jiao Bao-Bao
PDF
HTML
导出引用
  • 系统研究了2013年发表的核电荷半径数据库中的实验值, 基于这个数据库中大量的同位素链核电核半径实验值, 对相邻3个同位素核电荷半径之间的关系进行分析, 进而得到一个新的核电荷半径关系: 一个原子核的电荷半径等于其左右相邻的两个同位素核电荷半径之和的一半. 运用该关系对质量数$ A\geqslant20 $ (质子数$ Z\geqslant10 $和中子数$ N\geqslant10 $)的核电荷半径进行拟合, 结果发现核电荷半径的理论值与实验值符合得较好, 均方根偏差(RMSD)仅为0.00471 fm; 对质量数$ A\geqslant54 $的核电荷半径进行拟合时, 得到理论值和实验值的RMSD仅为0.00337 fm. 同时还添加了奇偶摆动修正来提高核电荷半径的精确度. 此外, 利用这个新的核电荷关系, 结合1999年和2004年发表的数据库对一些核电荷半径进行预言, 得到核电荷半径的预言值与2013年发表的数据库中的实验值符合得较好; 基于CR2013数据库得到的预言值与近几年新测得的核电荷半径的实验值也较接近. 研究结果表明新的核电荷半径关系对电荷半径的描述和预言具有一定的精确性和可靠性.
    In this paper, experimental values of nuclear charge radii in database published in 2013 (CR2013 database) are systematically investigated. We analyze the relationship among the three neighboring nuclei based on the nuclear charge radius of isotope chain in the database. Then we obtain a new nuclear charge radius relation for atomic nuclei: the charge radius of a given nucleus is equal to the average of the charge radii of its two neighboring nuclei. We calculate the nuclear charge radius by combining the new relation with CR2013 database, the root-mean-squared deviation (RMSD) between our calculated values and the experimental values in CR2013 database is small: for nuclei with A $\geqslant$ 20 (proton number Z $\geqslant$ 10 and neutron number N $\geqslant$ 10), the RMSD $\approx$ 0.00471 fm; for nuclei with A $\geqslant$ 54, the RMSD reaches an accuracy of RMSD $\approx$ 0.00337 fm. The systematicness of nuclear charge radius in heavy nucleus region is better than that in the light nucleus region, so that the values are more precise in the heavy nucleus region. In the meantime, we also use the odd-even staggering to improve the accuracy of nuclear charge radius: the accuracy increases by about 6.8%. In addition, according to the CR1999 and CR2004 database and the new relation, we make some predictions about some nuclear charge radii, and we find that our predicted values only slightly deviate from the experimental values in CR2013 database. The difference between our predicted value based on CR2013 database and experimental value measured in recent years is small. These results show that the proposed new relation used to study nuclear charge radius is feasible and accurate. The predicted values can provide a valuable reference for future experiments.
      通信作者: 焦宝宝, baobaojiao91@126.com
    • 基金项目: 东华理工大学博士科研启动基金(批准号:DHBK2019151)资助的课题
      Corresponding author: Jiao Bao-Bao, baobaojiao91@126.com
    • Funds: Project supported by the Doctoral Scientific Research Foundation of East China University of Technology, China (Grant No. DHBK2019151)
    [1]

    Horowitz C J, Piekarewicz J 2001 Phys. Rev. Lett. 86 5647Google Scholar

    [2]

    Zhang S S, Smith M S, Kang Z S, Zhao J 2014 Phys. Lett. B 730 30Google Scholar

    [3]

    Abrahamyan S, Ahmed Z, Albataineh H, et al. 2012 Phys. Rev. Lett. 108 112502Google Scholar

    [4]

    Engfer R, Schneuwly H, Vuilleumier J L, Walter H K, Zehnder A 1974 At. Data Nucl. Data Tables 14 509Google Scholar

    [5]

    Fricke G, Bernhardt C, Heilig K, et al. 1995 At. Data Nucl. Data Tables 60 177Google Scholar

    [6]

    De Vries H, De Jager C W, De Vries C 1987 At. Data Nucl. Data Tables 36 495Google Scholar

    [7]

    Aufmuth P, Heilig K, Steudel A 1987 At. Data Nucl. Data Tables 37 455Google Scholar

    [8]

    Heilig K, Steudel A 1974 At. Data Nucl. Data Tables 14 613Google Scholar

    [9]

    Stoitsov M V, Dobaczewski J, Nazarewicz W, Pittel S, Dean D J 2003 Phys. Rev. C 68 054312Google Scholar

    [10]

    Goriely S, Chamel N, Pearson J M 2010 Phys. Rev. C 82 035804Google Scholar

    [11]

    Dieperink A E L, Van Isacker P 2009 Eur. Phys. J. A 42 269Google Scholar

    [12]

    Wang N, Li T 2013 Phys. Rev. C 88 011301Google Scholar

    [13]

    Garvey G T, Gerace W J, Jaffe R L, Talmi I, Kelson I 1969 Rev. Mod. Phys. 41 S1Google Scholar

    [14]

    Sun B H, Lu Y, Peng J P, Liu C Y, Zhao Y M 2014 Phys. Rev. C 90 054318Google Scholar

    [15]

    Bao M, Lu Y, Zhao Y M, Arima A 2016 Phys. Rev. C 94 064315Google Scholar

    [16]

    Nerlo-Pomorska B, Pomorski K 1993 Z Phys. A 344 359Google Scholar

    [17]

    Nerlo-Pomorska B, Pomorski K 1994 Z Phys. A 348 169Google Scholar

    [18]

    圣宗强, 樊广伟, 钱建发 2015 64 112101Google Scholar

    Sheng Z Q, Fan G W, Qian J F 2015 Acta Phys. Sin. 64 112101Google Scholar

    [19]

    Ma Y F, Su C, Liu J, Ren Z Z, Xu C, Gao Y H 2020 Phys. Rev. C 101 014304Google Scholar

    [20]

    Angeli I, Marinova K P 2013 At. Data Nucl. Data Tables 99 69Google Scholar

    [21]

    Angeli I 2004 At. Data Nucl. Data Tables 87 185Google Scholar

    [22]

    Angeli I 1999 Table of Nuclear Root Mean Square Charge Radii (Appendix IV) (Vienna: International Nuclear Data Committee) INDC(HUN)-033 IAEA Nuclear Data Section

    [23]

    Reinhard P G, Nazarewicz W 2021 Phys. Rev. C 103 054310Google Scholar

    [24]

    Wu D, Bai C L, Sagawa H, Zhang H Q 2020 Phys. Rev. C 102 054323Google Scholar

    [25]

    Bao M, Zong Y Y, Zhao Y M, Arima A 2020 Phys. Rev. C 102 014306Google Scholar

    [26]

    Thakur V, Dhiman S K 2019 Nucl. Phys. A 992 121623Google Scholar

    [27]

    De Groote R P, Billowes J, Binnersley C L, et al. 2020 Nat. Phys. 16 620Google Scholar

    [28]

    Koszorús Á, Yang X F, Jiang W G, et al. 2021 Nat. Phys. 17 439Google Scholar

    [29]

    Reinhard P G, Nazarewicz W, Garcia Ruiz R F 2020 Phys. Rev. C 101 021301(RGoogle Scholar

    [30]

    Fadeev P, Berengut J C, Flambaum V V 2020 Phys. Rev. A 102 052833Google Scholar

    [31]

    曾谨言 1957 13 357Google Scholar

    Zeng J Y 1957 Acta Phys. Sin. 13 357Google Scholar

    [32]

    张双全, 孟杰, 周善贵, 曾谨言 2002 高能物理与核物理 26 252Google Scholar

    Zhang S Q, Meng J, Zhou S G, Zeng J Y 2002 High Energy Physics and Nuclear Physics 26 252Google Scholar

    [33]

    Ma C, Zong Y Y, Zhao Y M, Arima A 2021 Phys. Rev. C 104 014303Google Scholar

    [34]

    Borrajo M, Egido J E 2017 Phys. Lett. B 764 328Google Scholar

    [35]

    Satuła W, Dobaczewski J, Nazarewicz W 1998 Phys. Rev. Lett. 81 3599Google Scholar

    [36]

    Qi C, Wyss R 2016 Phys. Scr. 91 013009Google Scholar

    [37]

    Möller P, Nix J R, Myers W D, Swiatecki W J 1995 At. Data Nucl. Data Tables 59 185Google Scholar

    [38]

    Fu G J, Lei Y, Jiang H, Zhao Y M, Sun B, Arima A 2011 Phys. Rev. C 84 034311Google Scholar

    [39]

    Jiao B B 2018 Mod. Phys. Lett. A 33 1850156

    [40]

    Bissell M L, Carette T, Flanagan K T, et al. 2016 Phys. Rev. C 93 064318Google Scholar

    [41]

    Xie L, Yang X F, Wraith C, et al. 2019 Phys. Lett. B 797 134805Google Scholar

    [42]

    Gorges C, Rodríguez L V, Balabanski D L, et al. 2019 Phys. Rev. Lett. 122 192502Google Scholar

    [43]

    Koszorús Á, Yang X F, Billowes J, et al. 2019 Phys. Rev. C 100 034304Google Scholar

    [44]

    Marsh B A, Day Goodacre T, Sels S, et al. 2018 Nat. Phys. 14 1163Google Scholar

  • 图 1  600个原子核的${\rm{d}}R_{n}(Z, N)$

    Fig. 1.  The ${\rm{d}}R_{n}(Z, N)$ of 600 nuclei.

    图 2  (a) Rb (Z = 37), Sr (Z = 38), Y (Z = 39), Zr (Z = 40)和 Nb (Z = 41)同位素链核电荷半径的实验值; (b) Eu (Z = 63), Tb (Z = 65)和Ho (Z = 67)同位素链核电荷半径的实验值

    Fig. 2.  (a) Nuclear charge radii of Rb (Z = 37), Sr (Z = 38), Y (Z = 39), Zr (Z = 40) and Nb (Z = 41) elements; (b) nuclear charge radii of Eu (Z = 63), Tb (Z = 65) and Ho (Z = 67) elements

    图 3  (a) Au (Z = 79)同位素链核电荷半径的实验值; (b) Hg (Z = 80)同位素链核电荷半径的实验值

    Fig. 3.  (a) Nuclear charge radii of Au (Z = 79) elements; (b) nuclear charge radii of Hg (Z = 80) elements

    图 4  573个原子核的$ {\rm{d}}R_{n}(Z, N) $

    Fig. 4.  The $ {\rm{d}}R_{n}(Z, N) $ of 573 nuclei

    图 5  基于CR2013数据库得到的预言值与其他模型[25,33]得到的预言值对比图

    Fig. 5.  Difference for predicted values of nuclear charge radius between in our paper (obtained by the CR2013 database) and others’ papers[25,33]

    表 1  基于CR1999数据库得到的预言值与CR2013数据库中的实验值进行对比

    Table 1.  Difference between the predicted values of nuclear charge radius (obtained by the CR1999 database) and experimental values in the CR2013 database

    Nucleus $2013^{{\rm{Exp}}}$/fm $R_{\rm{{th1}} }$/fm dev1/fm Nucleus $2013^{{\rm{Exp}}}$/fm $R_{\rm{{th1}} }$/fm dev1/fm
    $^{23}$Ne 2.9104 2.9355 –0.0251 $^{126}$Sn 4.6833 4.6795 0.0038
    $^{37}$Ar 3.3908 3.3967 –0.0059 $^{127}$Xe 4.7747 4.7761 –0.0014
    $^{39}$Ar 3.4093 3.4151 –0.0058 $^{133}$Xe 4.7831 4.7895 –0.0064
    $^{40}$K 3.4381 3.4434 –0.0053 $^{133}$Ba 4.8286 4.835 –0.0064
    $^{41}$Ca 3.478 3.5068 –0.0288 $^{139}$Ba 4.8513 4.8442 0.0071
    $^{45}$Ca 3.4944 3.5235 –0.0291 $^{141}$Nd 4.9057 4.8992 0.0065
    $^{45}$Ti 3.5939 3.6178 –0.0239 $^{146}$Sm 4.9808 4.9742 0.0066
    $^{47}$Ca 3.4783 3.4862 –0.0079 $^{151}$Sm 5.055 5.0622 –0.0072
    $^{67}$Zn 3.953 3.9575 –0.0045 $^{153}$Sm 5.0925 5.0936 –0.0011
    $^{79}$Kr 4.2034 4.2004 0.003 $^{160}$Dy 5.1951 5.185 0.0101
    $^{81}$Kr 4.1952 4.1956 –0.0004 $^{169}$Yb 5.2771 5.28 –0.0029
    $^{85}$Kr 4.1846 4.1878 –0.0032 $^{175}$Yb 5.3135 5.3166 –0.0031
    $^{85}$Sr 4.2304 4.2358 –0.0054 $^{175}$Hf 5.3191 5.3263 –0.0072
    $^{86}$Rb 4.2025 4.2013 0.0012 $^{187}$Os 5.3933 5.3961 –0.0028
    $^{89}$Sr 4.2407 4.2231 0.0176 $^{193}$Pt 5.4191 5.4202 –0.0011
    $^{89}$Zr 4.2706 4.2543 0.0163 $^{195}$Pb 5.4389 5.4442 –0.0053
    $^{107}$Cd 4.5466 4.548 –0.0014 $^{197}$Hg 5.4412 5.4452 –0.004
    $^{109}$Cd 4.5601 4.5678 –0.0077 $^{201}$Hg 5.4581 5.4614 –0.0033
    $^{109}$Sn 4.5679 4.5734 –0.0055 $^{203}$Hg 5.4679 5.4696 –0.0017
    $^{114}$In 4.6056 4.6083 –0.0027 $^{204}$Tl 5.4704 5.4712 –0.0008
    $^{115}$Cd 4.6114 4.6153 –0.0039 $^{236}$U 5.8431 5.8383 0.0048
    下载: 导出CSV

    表 2  基于CR2004数据库得到的预言值与CR2013数据库中的实验值进行对比

    Table 2.  Difference between the predicted values of nuclear charge radius (obtained by the CR2004 database) and experimental values in the CR2013 database

    Nucleus $ 2013^{ {\rm{Exp} }} $/fm $R_{\rm th2}$/fm dev2/fm
    $^{39}$Ga 3.4595 3.4772 –0.0177
    $^{41}$Ar 3.4251 3.4455 –0.0204
    $^{45}$Ti 3.5939 3.6178 –0.0239
    $^{67}$Zn 3.953 3.9575 –0.0045
    $^{77}$Sr 4.2569 4.2536 0.0033
    $^{117}$Cd 4.6136 4.6258 –0.0122
    $^{126}$Sn 4.6833 4.6795 0.0038
    $^{127}$Xe 4.7747 4.7761 –0.0014
    $^{133}$Xe 4.7831 4.7895 –0.0064
    $^{137}$Eu 4.9762 4.9798 –0.0036
    $^{155}$Yb 5.104 5.1047 –0.0007
    $^{157}$Yb 5.1324 5.1358 –0.0034
    $^{159}$Yb 5.1629 5.1656 –0.0027
    $^{169}$Yb 5.2771 5.2787 –0.0016
    $^{171}$Hf 5.3041 5.2986 0.0055
    $^{175}$Yb 5.3135 5.3166 –0.0031
    $^{189}$Pb 5.4177 5.4215 –0.0038
    $^{195}$Pb 5.4389 5.4428 –0.0039
    $^{204}$Tl 5.4704 5.4725 –0.0021
    下载: 导出CSV

    表 3  基于CR2013数据库得到的预言值与近几年测得的实验值[27,28,40,41]进行对比

    Table 3.  Difference between the predicted values of nuclear charge radius (obtained by the CR2013 database) and experimental values in recent years

    Nucleus $R_{{\rm{th}}3}$/fm $R_{{\rm{exp}}}$/fm dev3/fm
    $^{37}{\rm{K}}$ 3.4179 3.419[28] –0.0011
    $^{48}{\rm{K}}$ 3.4510 3.4825[28] –0.0315
    $^{64}{\rm{Cu}}$ 3.8923 3.8873[27,40] 0.005
    $^{65}{\rm{Zn}}$ 3.9420 3.9164[41] 0.0256
    $^{69}{\rm{Zn}}$ 3.9769 3.9524[41] 0.0245
    下载: 导出CSV
    Baidu
  • [1]

    Horowitz C J, Piekarewicz J 2001 Phys. Rev. Lett. 86 5647Google Scholar

    [2]

    Zhang S S, Smith M S, Kang Z S, Zhao J 2014 Phys. Lett. B 730 30Google Scholar

    [3]

    Abrahamyan S, Ahmed Z, Albataineh H, et al. 2012 Phys. Rev. Lett. 108 112502Google Scholar

    [4]

    Engfer R, Schneuwly H, Vuilleumier J L, Walter H K, Zehnder A 1974 At. Data Nucl. Data Tables 14 509Google Scholar

    [5]

    Fricke G, Bernhardt C, Heilig K, et al. 1995 At. Data Nucl. Data Tables 60 177Google Scholar

    [6]

    De Vries H, De Jager C W, De Vries C 1987 At. Data Nucl. Data Tables 36 495Google Scholar

    [7]

    Aufmuth P, Heilig K, Steudel A 1987 At. Data Nucl. Data Tables 37 455Google Scholar

    [8]

    Heilig K, Steudel A 1974 At. Data Nucl. Data Tables 14 613Google Scholar

    [9]

    Stoitsov M V, Dobaczewski J, Nazarewicz W, Pittel S, Dean D J 2003 Phys. Rev. C 68 054312Google Scholar

    [10]

    Goriely S, Chamel N, Pearson J M 2010 Phys. Rev. C 82 035804Google Scholar

    [11]

    Dieperink A E L, Van Isacker P 2009 Eur. Phys. J. A 42 269Google Scholar

    [12]

    Wang N, Li T 2013 Phys. Rev. C 88 011301Google Scholar

    [13]

    Garvey G T, Gerace W J, Jaffe R L, Talmi I, Kelson I 1969 Rev. Mod. Phys. 41 S1Google Scholar

    [14]

    Sun B H, Lu Y, Peng J P, Liu C Y, Zhao Y M 2014 Phys. Rev. C 90 054318Google Scholar

    [15]

    Bao M, Lu Y, Zhao Y M, Arima A 2016 Phys. Rev. C 94 064315Google Scholar

    [16]

    Nerlo-Pomorska B, Pomorski K 1993 Z Phys. A 344 359Google Scholar

    [17]

    Nerlo-Pomorska B, Pomorski K 1994 Z Phys. A 348 169Google Scholar

    [18]

    圣宗强, 樊广伟, 钱建发 2015 64 112101Google Scholar

    Sheng Z Q, Fan G W, Qian J F 2015 Acta Phys. Sin. 64 112101Google Scholar

    [19]

    Ma Y F, Su C, Liu J, Ren Z Z, Xu C, Gao Y H 2020 Phys. Rev. C 101 014304Google Scholar

    [20]

    Angeli I, Marinova K P 2013 At. Data Nucl. Data Tables 99 69Google Scholar

    [21]

    Angeli I 2004 At. Data Nucl. Data Tables 87 185Google Scholar

    [22]

    Angeli I 1999 Table of Nuclear Root Mean Square Charge Radii (Appendix IV) (Vienna: International Nuclear Data Committee) INDC(HUN)-033 IAEA Nuclear Data Section

    [23]

    Reinhard P G, Nazarewicz W 2021 Phys. Rev. C 103 054310Google Scholar

    [24]

    Wu D, Bai C L, Sagawa H, Zhang H Q 2020 Phys. Rev. C 102 054323Google Scholar

    [25]

    Bao M, Zong Y Y, Zhao Y M, Arima A 2020 Phys. Rev. C 102 014306Google Scholar

    [26]

    Thakur V, Dhiman S K 2019 Nucl. Phys. A 992 121623Google Scholar

    [27]

    De Groote R P, Billowes J, Binnersley C L, et al. 2020 Nat. Phys. 16 620Google Scholar

    [28]

    Koszorús Á, Yang X F, Jiang W G, et al. 2021 Nat. Phys. 17 439Google Scholar

    [29]

    Reinhard P G, Nazarewicz W, Garcia Ruiz R F 2020 Phys. Rev. C 101 021301(RGoogle Scholar

    [30]

    Fadeev P, Berengut J C, Flambaum V V 2020 Phys. Rev. A 102 052833Google Scholar

    [31]

    曾谨言 1957 13 357Google Scholar

    Zeng J Y 1957 Acta Phys. Sin. 13 357Google Scholar

    [32]

    张双全, 孟杰, 周善贵, 曾谨言 2002 高能物理与核物理 26 252Google Scholar

    Zhang S Q, Meng J, Zhou S G, Zeng J Y 2002 High Energy Physics and Nuclear Physics 26 252Google Scholar

    [33]

    Ma C, Zong Y Y, Zhao Y M, Arima A 2021 Phys. Rev. C 104 014303Google Scholar

    [34]

    Borrajo M, Egido J E 2017 Phys. Lett. B 764 328Google Scholar

    [35]

    Satuła W, Dobaczewski J, Nazarewicz W 1998 Phys. Rev. Lett. 81 3599Google Scholar

    [36]

    Qi C, Wyss R 2016 Phys. Scr. 91 013009Google Scholar

    [37]

    Möller P, Nix J R, Myers W D, Swiatecki W J 1995 At. Data Nucl. Data Tables 59 185Google Scholar

    [38]

    Fu G J, Lei Y, Jiang H, Zhao Y M, Sun B, Arima A 2011 Phys. Rev. C 84 034311Google Scholar

    [39]

    Jiao B B 2018 Mod. Phys. Lett. A 33 1850156

    [40]

    Bissell M L, Carette T, Flanagan K T, et al. 2016 Phys. Rev. C 93 064318Google Scholar

    [41]

    Xie L, Yang X F, Wraith C, et al. 2019 Phys. Lett. B 797 134805Google Scholar

    [42]

    Gorges C, Rodríguez L V, Balabanski D L, et al. 2019 Phys. Rev. Lett. 122 192502Google Scholar

    [43]

    Koszorús Á, Yang X F, Billowes J, et al. 2019 Phys. Rev. C 100 034304Google Scholar

    [44]

    Marsh B A, Day Goodacre T, Sels S, et al. 2018 Nat. Phys. 14 1163Google Scholar

  • [1] 齐刚, 黄印博, 凌菲彤, 杨佳琦, 黄俊, 杨韬, 张雷雷, 卢兴吉, 袁子豪, 曹振松. 多微管阵列结构腔-原子吸收光谱测量Rb同位素比.  , 2023, 72(5): 053201. doi: 10.7498/aps.72.20221963
    [2] 邸淑红, 张阳, 杨会静, 崔乃忠, 李艳坤, 刘会媛, 李伶利, 石凤良, 贾玉璇. 铷簇同位素效应的量化研究.  , 2023, 72(18): 182101. doi: 10.7498/aps.72.20230778
    [3] 焦宝宝. 基于原子核密度的核电荷半径新关系.  , 2023, 72(11): 112101. doi: 10.7498/aps.72.20230126
    [4] 曹颖逾, 郭建友. 原子核电荷半径的研究.  , 2020, 69(16): 162101. doi: 10.7498/aps.69.20191643
    [5] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江, 岑超. 聚乙烯单链量子热输运的同位素效应.  , 2017, 66(11): 116501. doi: 10.7498/aps.66.116501
    [6] 圣宗强, 樊广伟, 钱建发. 关于原子核电荷半径的研究.  , 2015, 64(11): 112101. doi: 10.7498/aps.64.112101
    [7] 任桂明, 郑圆圆, 王丁, 王林, 谌晓洪, 王玲, 马敏, 刘华兵. 氢化氧化铝的同位素效应研究.  , 2014, 63(23): 233104. doi: 10.7498/aps.63.233104
    [8] 陈兴鹏, 王楠. 相对论平均场理论对Rn同位素链原子核基态性质的研究.  , 2011, 60(11): 112101. doi: 10.7498/aps.60.112101
    [9] 焦朋, 郭建友, 方向正. 偶偶 Ra 同位素的八极形变研究.  , 2010, 59(4): 2369-2374. doi: 10.7498/aps.59.2369
    [10] 孔浩, 刘新国, 许文武, 梁景娟, 张庆刚. He+H+2及其同位素取代反应的立体动力学研究.  , 2009, 58(10): 6926-6931. doi: 10.7498/aps.58.6926
    [11] 刘建业, 郭文军, 左 维, 李希国. 核子-核子碰撞截面对同位素标度参数α的同位旋效应.  , 2008, 57(9): 5458-5463. doi: 10.7498/aps.57.5458
    [12] 张玉美, 许甫荣. 丰中子氮同位素β-衰变的理论研究.  , 2008, 57(8): 4826-4832. doi: 10.7498/aps.57.4826
    [13] 圣宗强, 郭建友. 相对论平均场理论对Se,Kr,Sr和Zr同位素链形状共存的系统研究.  , 2008, 57(3): 1557-1563. doi: 10.7498/aps.57.1557
    [14] 李文飞, 张丰收, 陈列文. 化学不稳定性和同位素分布的同位旋效应.  , 2001, 50(6): 1040-1045. doi: 10.7498/aps.50.1040
    [15] 陈寿面, 王震遐, 潘冀生, 郑里平. 同位素择尤溅射角分布研究.  , 1989, 38(11): 1785-1791. doi: 10.7498/aps.38.1785
    [16] 马兴孝. 激光分离同位素的动力学.  , 1979, 28(1): 1-14. doi: 10.7498/aps.28.1
    [17] 马兴孝, 胡照林. 红外聚焦脉冲激光场中同位素浓缩过程的动力学处理.  , 1978, 27(6): 645-650. doi: 10.7498/aps.27.645
    [18] 曾谨言. 原子核电荷半径的Z1/3.  , 1975, 24(2): 151-163. doi: 10.7498/aps.24.151
    [19] 曾谨言. 原子核电荷分布半径及结合能.  , 1957, 13(5): 357-364. doi: 10.7498/aps.13.357
    [20] 嚴德浩. 關於同位素之數目.  , 1946, 6(2): 108-111. doi: 10.7498/aps.6.108
计量
  • 文章访问数:  4735
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-18
  • 修回日期:  2022-04-08
  • 上网日期:  2022-07-19
  • 刊出日期:  2022-08-05

/

返回文章
返回
Baidu
map