搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第二类Weyl半金属的金属-超导-金属结中的Andreev反射

陈书刚 李学思 韩宇

引用本文:
Citation:

第二类Weyl半金属的金属-超导-金属结中的Andreev反射

陈书刚, 李学思, 韩宇

Andreev reflection in a normal-superconductor-normal junction based on type-II Weyl semimetal

Chen Shu-Gang, Li Xue-Si, Han Yu
PDF
HTML
导出引用
  • 理论上研究了第二类Weyl半金属的金属-超导-金属(NSN)结在倾斜一定角度后体系的散射性质, 计算结果显示倾斜角可以决定体系的散射机制, 当倾斜角较小时, NSN结中存在两种局域Andreev反射和两种电子隧穿, 包括径向Andreev反射、镜面Andreev反射、径向电子隧穿和镜面电子隧穿. 随着倾斜角的增加, 局域Andreev反射逐渐被抑制, 当倾斜角超过临界角后, NSN结中的输运过程与正常金属的NSN结相同, 会同时发生电子正常反射、电子隧穿、局域Andreev反射和交叉Andreev反射. 此外, 体系的总电导不受化学势的影响, 并且在倾斜角小于临界角时不受入射角的影响, 而在倾斜角大于临界角时随入射角的增加而减小, 而交叉Andreev反射电导在某些条件下会随入射角的增加而增强.
    The quantum transport behavior of the normal-superconductor-normal (NSN) junction is studied theoretically based on a type-II Weyl semimetal which is rotated a certain angle. The calculation results show that the orientation angle determines the scattering mechanism of the system. In the NSN junction, there exist simultaneously two local Andreev reflections (ARs) (retro AR and specular AR) and two local election transmissions (ETs) (retro ET and specular ET) when the orientation angle is small. Moreover, the retro AR is gradually suppressed with the further increase of the orientation angle. When the orientation angle exceeds the critical angle, the scattering mechanism in NSN junction is the same as that of the NSN junction in normal mental, i.e. the normal electron reflection, normal electron transmission, retro Andreev reflection and crossed Andreev reflection take place simultaneously. In addition, the total conductance of the system is unaffected by the chemical potential, nor by the incident angle when the orientation angle is smaller than the critical angle, but decreases with the increase of the incident angle when the orientation angle is greater than the critical angle. The conductance of crossed Andreev reflection increases with incident angle increasing under some conditions.
      通信作者: 韩宇, hanyu@lnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11872030, 11972177)和辽宁省自然科学基金(批准号: 2021-MS-148)资助的课题
      Corresponding author: Han Yu, hanyu@lnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11872030, 11972177) and the Natural Science Foundation of Liaoning Province, China (Grant No. 2021-MS-148)
    [1]

    Chang G Q, Xu S Y, Sanchez D S, Huang S M, Lee C C, Chang T R, Bian G, Zheng H, Belopolski I, Alidoust N, Jeng H T, Bansil A, Lin H, Hasan M Z 2016 Sci. Adv. 2 e1600295Google Scholar

    [2]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 Science 349 613Google Scholar

    [3]

    Xu S Y, Belopolski I, Sanchez D S, Zhang C, Chang G, Guo C, Bian G, Yuan Z, Lu H, Chang T R, Shibayev P P, Prokopovych M L, Alidoust N, Zheng H, Lee C C, Huang S M, Sankar R, Chou F, Hsu C H, Jeng H T, Bansil A, Neupert T, Strocov V N, Lin H, Jia S, Zahid Hasan M 2015 Sci. Adv. 1 e1501092Google Scholar

    [4]

    Zheng H, Hasan M Z 2018 Adv. Phys. X 3 1466661Google Scholar

    [5]

    Zhang K X, Du Y P, Wang P D, Wei L M, Li L, Zhang Q, Qin W, Lin Z Y, Cheng B, Wang Y F, Xu H, Fan X D, Sun Z, Wan X G, Zeng C G 2020 Chin. Phys. Lett. 37 090301Google Scholar

    [6]

    Zhou Z Z, Liu H J, Wang G Y, Wang R, Zhou X Y 2021 Chin. Phys. Lett. 38 077101Google Scholar

    [7]

    Morishima K, Kondo K 2021 J. Appl. Phys. 129 125104Google Scholar

    [8]

    Meng W, Zhang X, He T, Jin L, Dai X, Liu Y, Liu G 2020 J. Adv. Res. 24 523Google Scholar

    [9]

    Huang L, McCormick T M, Ochi M, Zhao Z, Suzuki M T, Arita R, Wu Y, Mou D, Cao H, Yan J, Trivedi N, Kaminski A 2016 Nat. Mater. 15 1155Google Scholar

    [10]

    Jiang J, Liu Z K, Sun Y, Yang H F, Rajamathi C R, Qi Y P, Yang L X, Chen C, Peng H, Hwang C C, Sun S Z, Mo S K, Vobornik I, Fujii J, Parkin S S P, Felser C, Yan B H, Chen Y L 2017 Nat. Commun. 8 13973Google Scholar

    [11]

    Tamai A, Wu Q S, Cucchi I, Bruno F Y, Riccò S, Kim T K, Hoesch M, Barreteau C, Giannini E, Besnard C, Soluyanov A A, Baumberger F 2016 Phys. Rev. X 6 031021

    [12]

    Xu S Y, Alidoust N, Chang G, Lu H, Singh B, Belopolski I, Sanchez D S, Zhang X, Bian G, Zheng H, Husanu M A, Bian Y, Huang S M, Hsu C H, Chang T R, Jeng H T, Bansll A, Neupert T, Strocov V N, Lin H, Jia S, Hasan M Z 2017 Sci. Adv. 3 e1603266Google Scholar

    [13]

    Bruno F Y, Tamai A, Wu Q S, Cucchi I, Barreteau C, De La Torre A, McKeown Walker S, Riccò S, Wang Z, Kim T K, Hoesch M, Shi M, Plumb N C, Giannini E, Soluyanov A A, Baumberger F 2016 Phys. Rev. B 94 121112(RGoogle Scholar

    [14]

    Wang C, Zhang Y, Huang J, Nie S, Liu G, Liang A, Zhang Y, Shen B, Liu J, Hu C, Ding Y, Liu D, Hu Y, He S, Zhao L, Yu L, Hu J, Wei J, Mao Z, Shi Y, Jia X, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Weng H, Dai X, Fang Z, Xu Z, Chen C, Zhou X J 2016 Phys. Rev. B 94 241119Google Scholar

    [15]

    Wu Y, Mou D, Jo N H, Sun K, Huang L, Bud’Ko S L, Canfield P C, Kaminski A 2016 Phys. Rev. B 94 121113Google Scholar

    [16]

    Chang T R, Xu S Y, Chang G, Lee C C, Huang S M, Wang B K, Bian G, Zheng H, Sanchez D S, Belopolski I, Alidoust N, Neupane M, Bansil A, Jeng H T, Lin H, Zahid Hasan M 2016 Nat. Commun. 7 10639Google Scholar

    [17]

    Belopolski I, Sanchez D S, Ishida Y, Pan X, Yu P, Xu S Y, Chang G, Chang T R, Zheng H, Alidoust N, Bian G, Neupane M, Huang S M, Lee C C, Song Y, Bu H, Wang G, Li S, Eda G, Jeng H T, Kondo T, Lin H, Liu Z, Song F, Shin S, Zahid Hasan M 2016 Nat. Commun. 7 13643Google Scholar

    [18]

    Afanasiev A N, Greshnov A A, Svintsov D 2021 Phys. Rev. B 103 205201Google Scholar

    [19]

    Zyuzin A A, Tiwari R P 2016 JETP Lett. 103 717Google Scholar

    [20]

    Duan H J, Zheng S H, Wang R Q, Deng M X, Yang M 2019 Phys. Rev. B 99 165111Google Scholar

    [21]

    Zhang M, Yang Z, Wang G 2018 J. Phys. Chem. C 122 3533Google Scholar

    [22]

    Autès G, Gresch D, Troyer M, Soluyanov A A, Yazyev O V 2016 Phys. Rev. Lett. 117 066402Google Scholar

    [23]

    Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X, Zhou S 2016 Nat. Phys. 12 1105Google Scholar

    [24]

    Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H, Xing D, Wang B, Wan X, Miao F 2016 Nat. Commun. 7 13142Google Scholar

    [25]

    Yu Z M, Yao Y, Yang S A 2016 Phys. Rev. Lett. 117 077202Google Scholar

    [26]

    Li D, Rosenstein B, Shapiro B Y, Shapiro I 2017 Phys. Rev. B 95 094513Google Scholar

    [27]

    Das K, Agarwal A 2019 Phys. Rev. B 99 085405Google Scholar

    [28]

    Sharma G, Goswami P, Tewari S 2017 Phys. Rev. B 96 045112Google Scholar

    [29]

    Hou Z, Sun Q F 2017 Phys. Rev. B 96 155305Google Scholar

    [30]

    Niu Z P 2019 J. Phys. Condens. Matter 31 485701Google Scholar

    [31]

    Cheng Q, Sun Q F 2021 Phys. Rev. B 103 144518Google Scholar

    [32]

    Beenakker C W J 2006 Phys. Rev. Lett. 97 067007Google Scholar

    [33]

    Cheng S G, Xing Y, Wang J, Sun Q F 2009 Phys. Rev. Lett. 103 167003Google Scholar

    [34]

    Soori A, Sahu M R, Das A, Mukerjee S 2018 Phys. Rev. B 98 075301Google Scholar

    [35]

    Wang C, Zou Y, Song J, Li Y X 2018 Phys. Rev. B 98 035403Google Scholar

    [36]

    Wei M, Zhou M, Zhang Y T, Xing Y 2020 Phys. Rev. B 101 155408Google Scholar

    [37]

    Zhang S, Zhang T 2021 Phys. Status Solidi B 258 2100192Google Scholar

    [38]

    Uchida S, Habe T, Asano Y 2014 J. Phys. Soc. Jpn. 83 064711Google Scholar

    [39]

    Azizi A, Abdollahipour B 2020 Phys. Rev. B 102 024512Google Scholar

    [40]

    Mohammadpour H, Asgari A 2011 Phys. Lett. A 375 1339Google Scholar

    [41]

    Nehar R, Bhakuni D S, Sharma A, Soori A 2019 J. Phys. Condens. Matter 31 345304Google Scholar

    [42]

    Park G H, Watanabe K, Taniguchi T, Lee G H, Lee H J 2019 Nano Lett. 19 9002Google Scholar

    [43]

    Paul G C, Dutta P, Saha A 2017 J. Phys. Condens. Matter 29 015301Google Scholar

    [44]

    Ang Y S, Ang L K, Zhang C, Ma Z 2016 Phys. Rev. B 93 041422Google Scholar

    [45]

    Cayssol J 2008 Phys. Rev. Lett. 100 147001Google Scholar

    [46]

    Chen W, Shen R, Sheng L, Wang B G, Xing D Y 2011 Phys. Rev. B 84 115420Google Scholar

    [47]

    Liu Y, Yu Z M, Liu J, Jiang H, Yang S A 2018 Phys. Rev. B 98 195141Google Scholar

    [48]

    Li X S, Zhang S F, Sun X R, Gong W J 2018 New J. Phys. 20 103005Google Scholar

    [49]

    O’Brien T E, Diez M, Beenakker C W J 2016 Phys. Rev. Lett. 116 236401Google Scholar

    [50]

    Burkov A A, Balents L 2011 Phys. Rev. Lett. 107 127205Google Scholar

    [51]

    Wehling T O, Black-Schafferc A, Balatsky A V 2014 Adv. Phys. 63 1Google Scholar

    [52]

    De Gennes P G 1966 Superconductivity of Metals and Alloys (New York: Benjamin) pp137–160

    [53]

    Li H, Ouyang G 2019 Phys. Rev. B 100 085410Google Scholar

    [54]

    Blonder G E, Tinkham M, Klapwijk T M 1982 Phys. Rev. B 25 4515Google Scholar

  • 图 1  (a)第二类Weyl半金属的NSN结倾斜θ角度的示意图. 在(b) $ \theta<\theta_{{\rm{c}}} $和(c) $ \theta>\theta_{{\rm{c}}} $两种情况下$ k_y $$ k_z $一定时NSN结的能谱, 其中红色(蓝色)表示导带(价带), 实线(虚线)表示电子(空穴)

    Fig. 1.  (a) Schematic diagram of the NSN junction based on type-II WSM when changing the orientation angle θ. Energy spectra with finite $ k_y $ and $ k_z $ of the NSN junction for (b) $ \theta<\theta_{{\rm{c}}} $ and (c) $ \theta>\theta_{{\rm{c}}} $, where the conduction (valence) bands are colored with red (blue), and the solid (dashed) lines denote electrons (holes)

    图 2  $\theta < \theta_{{\rm{c}}}$时, 在入射能分别为(a)$ E=0 $和(b)$E= 0.6$时Andreev反射和电子隧穿的系数随倾斜角θ的变化. 相关参数为v1 = 1.1, v2 = 1, µ = 0.5, UL = 0, UR = 0, α = 30°, U = 100, $\varDelta=1$, L = 10ξ

    Fig. 2.  Andreev reflection and electron transmission coefficients as functions of orientation angle θ for (a) $ E=0 $ and (b) $ E=0.6 $ when $ \theta<\theta_{{\rm{c}}} $. Parameters: v1 = 1.1, v2 = 1, µ = 0.5, UL = 0, UR = 0, α = 30°, U = 100, $ \varDelta=1 $, L = 10ξ

    图 3  $\theta < \theta_{{\rm{c}}}$时, Andreev反射和电子隧穿的系数随入射能E的变化 (a), (c) $ v_1=1.1 $; (b), (d) $ \mu=0.5 $. 相关参数取值为 $\theta=3^{\circ}, $$ \alpha=30^{\circ},\; v_2=1, \;U_{{\rm{L}}}=0, \; U_{{\rm{R}}}=0, \; U=100, \; \varDelta=1, \; L=10\xi$

    Fig. 3.  Andreev reflections and electron transmission coefficients as a function of the incident energy E when $ \theta<\theta_{{\rm{c}}} $: (a), (c) $ v_1= $1.1; (b), (d) $ \mu=0.5 $. Parameters: $ \theta=3^{\circ} $, $ \alpha=30^{\circ}, \; v_2=1, \; U_{{\rm{L}}}=0, \; U_{{\rm{R}}}=0, \; U=100, \; \varDelta=1, \; L=10\xi$

    图 4  $\theta < \theta_{{\rm{c}}}$时, Andreev反射和电子隧穿的系数随超导体长度L的变化 (a) $ E=0; $ (b) $ E=0.6 $. 相关参数: $v_1= $$ 1.1,$ $ v_2=1, $ $ \mu=0.5, $ $U_{{\rm{L}}}=0, $ $U_{{\rm{R}}}=0, $ $\theta=3^{\circ}, $ $\alpha= $$ 30^{\circ},$ $ U=100, \; \varDelta=1$

    Fig. 4.  Andreev reflections and electron transmissions coefficients as a function of the SC region length L with incident energy (a) $ E=0 $ and (b) $ E=0.6 $ when $ \theta<\theta_{{\rm{c}}} $. Parameters: $v_1=1.1, $ $ v_2=1, $ $\mu=0.5, $ $U_{{\rm{L}}}=0, $ $U_{{\rm{R}}}=0, $ $\theta=3^{\circ}, $ $\alpha=30^{\circ}, $ $U=100, $ $ \varDelta=1 $

    图 5  $\theta > \theta_{{\rm{c}}}$时, Andreev反射和电子隧穿的系数随倾斜角θ的变化. 插图为散射系数随入射能E的变化. 相关参数: $ E=0, $ $v_1=1.3, $ $v_2=1, $ $\mu=0, $ $U_{{\rm{L}}}=0,$ $U_{{\rm{R}}}=0,$ $\alpha=85^{\circ}, $ $U=100, $ $\varDelta=1,$ $ L=\xi $

    Fig. 5.  Andreev reflections ($ R_{{\rm{ee}}} $ and $ R_{{\rm{eh}}} $) and electron transmissions coefficients ($ T_{{\rm{ee}}} $ and $ T_{{\rm{eh}}} $) as a function of orientation angle θ when $ \theta>\theta_{{\rm{c}}} $. The inset shows the scattering coefficients with the increment of the incident energy E. Parameters: $ E=0, $ $v_1=1.3, $ $v_2=1, $ $\mu=0, $ $U_{{\rm{L}}}=0, $ $ U_{{\rm{R}}}=0, $ $\alpha=85^{\circ}, $ $U=100, $ $\varDelta=1, $ $ L=\xi $

    图 6  总电导G和交叉Andreev反射电导$ G_{{\rm{CAR}}} $随(a), (b)倾斜角θ和(c), (d)偏压$ eV $的变化. 相应参数: (a), (b) $\mu=0.5,\; L= $$ 10\xi$; (c)$ \; \theta=59^{\circ}, \; \alpha=70^{\circ}, L=\xi $; (d) $\; \theta=59^{\circ}, \; \alpha=70^{\circ},\; L=10\xi.$ 其他参数: $v_1=2/\sqrt{3}, \; v_2=1, \; U_{{\rm{L}}}=0, \; U_{{\rm{R}}}=0, \; U=100, \; $$ \varDelta=1, \; \tilde{q}_m=10$

    Fig. 6.  Conductance G and its CAR component $ G_{{\rm{CAR}}} $ dependence of (a), (b) orientation angle θ and (c), (d) bias votage $ eV $. Parameters: (a), (b) $ \mu=0.5, L=10\xi $; (c)$ \; \theta=59^{\circ}, \; \alpha=70^{\circ}, L=\xi $; (d)$ \; \theta=59^{\circ}, \; \alpha=70^{\circ}, L=10\xi $. Other parameters: $v_1=2/\sqrt{3}, $$ \; v_2=1, \; U_{{\rm{L}}}=0, \; U_{{\rm{R}}}=0, \; U=100, \; \varDelta=1, \; \tilde{q}_m=10$

    表 1  各参数对散射系数的影响

    Table 1.  Influence of various parameters on scattering coefficient

    倾斜角
    ($0<\theta<90^{\circ}$)
    参数散射系数的变化
    $0^{\circ} < \theta\leqslant\theta_{ {\rm{c} } }$ 倾斜角$(\theta)$θ较小时, Andreev反射占主导; 随着θ的增加, Andreev反射逐渐被抑制; 当$\theta=\theta_{{\rm{c}}}$ 时, 只发生径向电子隧穿$T_1$, 其他散射过程被完全抑制.
    入射能$(E)$$E < \varDelta$ 时, 只发生Andreev反射, 电子隧穿被完全抑制. $E > \varDelta$ 时, Andreev反射随E的增加逐渐被抑制, 其类型取决于$E, \mu, v_1$的关系.
    化学势$(\mu)$$E<\mu$时, 只发生径向Andreev反射($A_1$); $E>\mu$时, 只发生镜面Andreev反射($A_2$), $E=\mu$是两种Andreev 反射互相转换的临界点.
    倾斜系数$(v_1)$$v_1\neq 1.1$, 两种Andreev反射共存; $v_1=1.1$, 只存在一种Andreev反射, 并且$A_1$随着$v_1$的增加而增大, $A_2$的变化趋势与$A_1$正相反.
    超导体长度$(L)$L较小时, Andreev 反射系数单调递增; $L>3\xi$以后, Andreev反射系数稳定在1.
    $\theta_{{\rm{c}}}<\theta<90^{\circ}$ 倾斜角$(\theta)$θ较小时, 交叉Andreev反射($T_{{\rm{eh}}}$)被完全抑制; 随着θ的增加, 电子正常反射($R_{\rm ee}$)和局域Andreev反射($R_{{\rm{eh}}}$)增强, 电子隧穿($T_{\rm ee}$)减小, 交叉Andreev反射($T_{{\rm{eh}}}$)先增大后减小, 散射系数而呈振荡型变化.
    入射能$(E)$ 交叉Andreev反射($T_{{\rm{eh}}}$)效果最好时, 随着E的增加, $R_{\rm ee}$单调递增, $T_{\rm ee}$和$T_{{\rm{eh}}}$先增大后减小, 而$R_{{\rm{eh}}}=0$, 其中$T_{{\rm{eh}}}$的最大值可达到0.43.
    下载: 导出CSV
    Baidu
  • [1]

    Chang G Q, Xu S Y, Sanchez D S, Huang S M, Lee C C, Chang T R, Bian G, Zheng H, Belopolski I, Alidoust N, Jeng H T, Bansil A, Lin H, Hasan M Z 2016 Sci. Adv. 2 e1600295Google Scholar

    [2]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 Science 349 613Google Scholar

    [3]

    Xu S Y, Belopolski I, Sanchez D S, Zhang C, Chang G, Guo C, Bian G, Yuan Z, Lu H, Chang T R, Shibayev P P, Prokopovych M L, Alidoust N, Zheng H, Lee C C, Huang S M, Sankar R, Chou F, Hsu C H, Jeng H T, Bansil A, Neupert T, Strocov V N, Lin H, Jia S, Zahid Hasan M 2015 Sci. Adv. 1 e1501092Google Scholar

    [4]

    Zheng H, Hasan M Z 2018 Adv. Phys. X 3 1466661Google Scholar

    [5]

    Zhang K X, Du Y P, Wang P D, Wei L M, Li L, Zhang Q, Qin W, Lin Z Y, Cheng B, Wang Y F, Xu H, Fan X D, Sun Z, Wan X G, Zeng C G 2020 Chin. Phys. Lett. 37 090301Google Scholar

    [6]

    Zhou Z Z, Liu H J, Wang G Y, Wang R, Zhou X Y 2021 Chin. Phys. Lett. 38 077101Google Scholar

    [7]

    Morishima K, Kondo K 2021 J. Appl. Phys. 129 125104Google Scholar

    [8]

    Meng W, Zhang X, He T, Jin L, Dai X, Liu Y, Liu G 2020 J. Adv. Res. 24 523Google Scholar

    [9]

    Huang L, McCormick T M, Ochi M, Zhao Z, Suzuki M T, Arita R, Wu Y, Mou D, Cao H, Yan J, Trivedi N, Kaminski A 2016 Nat. Mater. 15 1155Google Scholar

    [10]

    Jiang J, Liu Z K, Sun Y, Yang H F, Rajamathi C R, Qi Y P, Yang L X, Chen C, Peng H, Hwang C C, Sun S Z, Mo S K, Vobornik I, Fujii J, Parkin S S P, Felser C, Yan B H, Chen Y L 2017 Nat. Commun. 8 13973Google Scholar

    [11]

    Tamai A, Wu Q S, Cucchi I, Bruno F Y, Riccò S, Kim T K, Hoesch M, Barreteau C, Giannini E, Besnard C, Soluyanov A A, Baumberger F 2016 Phys. Rev. X 6 031021

    [12]

    Xu S Y, Alidoust N, Chang G, Lu H, Singh B, Belopolski I, Sanchez D S, Zhang X, Bian G, Zheng H, Husanu M A, Bian Y, Huang S M, Hsu C H, Chang T R, Jeng H T, Bansll A, Neupert T, Strocov V N, Lin H, Jia S, Hasan M Z 2017 Sci. Adv. 3 e1603266Google Scholar

    [13]

    Bruno F Y, Tamai A, Wu Q S, Cucchi I, Barreteau C, De La Torre A, McKeown Walker S, Riccò S, Wang Z, Kim T K, Hoesch M, Shi M, Plumb N C, Giannini E, Soluyanov A A, Baumberger F 2016 Phys. Rev. B 94 121112(RGoogle Scholar

    [14]

    Wang C, Zhang Y, Huang J, Nie S, Liu G, Liang A, Zhang Y, Shen B, Liu J, Hu C, Ding Y, Liu D, Hu Y, He S, Zhao L, Yu L, Hu J, Wei J, Mao Z, Shi Y, Jia X, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Weng H, Dai X, Fang Z, Xu Z, Chen C, Zhou X J 2016 Phys. Rev. B 94 241119Google Scholar

    [15]

    Wu Y, Mou D, Jo N H, Sun K, Huang L, Bud’Ko S L, Canfield P C, Kaminski A 2016 Phys. Rev. B 94 121113Google Scholar

    [16]

    Chang T R, Xu S Y, Chang G, Lee C C, Huang S M, Wang B K, Bian G, Zheng H, Sanchez D S, Belopolski I, Alidoust N, Neupane M, Bansil A, Jeng H T, Lin H, Zahid Hasan M 2016 Nat. Commun. 7 10639Google Scholar

    [17]

    Belopolski I, Sanchez D S, Ishida Y, Pan X, Yu P, Xu S Y, Chang G, Chang T R, Zheng H, Alidoust N, Bian G, Neupane M, Huang S M, Lee C C, Song Y, Bu H, Wang G, Li S, Eda G, Jeng H T, Kondo T, Lin H, Liu Z, Song F, Shin S, Zahid Hasan M 2016 Nat. Commun. 7 13643Google Scholar

    [18]

    Afanasiev A N, Greshnov A A, Svintsov D 2021 Phys. Rev. B 103 205201Google Scholar

    [19]

    Zyuzin A A, Tiwari R P 2016 JETP Lett. 103 717Google Scholar

    [20]

    Duan H J, Zheng S H, Wang R Q, Deng M X, Yang M 2019 Phys. Rev. B 99 165111Google Scholar

    [21]

    Zhang M, Yang Z, Wang G 2018 J. Phys. Chem. C 122 3533Google Scholar

    [22]

    Autès G, Gresch D, Troyer M, Soluyanov A A, Yazyev O V 2016 Phys. Rev. Lett. 117 066402Google Scholar

    [23]

    Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X, Zhou S 2016 Nat. Phys. 12 1105Google Scholar

    [24]

    Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H, Xing D, Wang B, Wan X, Miao F 2016 Nat. Commun. 7 13142Google Scholar

    [25]

    Yu Z M, Yao Y, Yang S A 2016 Phys. Rev. Lett. 117 077202Google Scholar

    [26]

    Li D, Rosenstein B, Shapiro B Y, Shapiro I 2017 Phys. Rev. B 95 094513Google Scholar

    [27]

    Das K, Agarwal A 2019 Phys. Rev. B 99 085405Google Scholar

    [28]

    Sharma G, Goswami P, Tewari S 2017 Phys. Rev. B 96 045112Google Scholar

    [29]

    Hou Z, Sun Q F 2017 Phys. Rev. B 96 155305Google Scholar

    [30]

    Niu Z P 2019 J. Phys. Condens. Matter 31 485701Google Scholar

    [31]

    Cheng Q, Sun Q F 2021 Phys. Rev. B 103 144518Google Scholar

    [32]

    Beenakker C W J 2006 Phys. Rev. Lett. 97 067007Google Scholar

    [33]

    Cheng S G, Xing Y, Wang J, Sun Q F 2009 Phys. Rev. Lett. 103 167003Google Scholar

    [34]

    Soori A, Sahu M R, Das A, Mukerjee S 2018 Phys. Rev. B 98 075301Google Scholar

    [35]

    Wang C, Zou Y, Song J, Li Y X 2018 Phys. Rev. B 98 035403Google Scholar

    [36]

    Wei M, Zhou M, Zhang Y T, Xing Y 2020 Phys. Rev. B 101 155408Google Scholar

    [37]

    Zhang S, Zhang T 2021 Phys. Status Solidi B 258 2100192Google Scholar

    [38]

    Uchida S, Habe T, Asano Y 2014 J. Phys. Soc. Jpn. 83 064711Google Scholar

    [39]

    Azizi A, Abdollahipour B 2020 Phys. Rev. B 102 024512Google Scholar

    [40]

    Mohammadpour H, Asgari A 2011 Phys. Lett. A 375 1339Google Scholar

    [41]

    Nehar R, Bhakuni D S, Sharma A, Soori A 2019 J. Phys. Condens. Matter 31 345304Google Scholar

    [42]

    Park G H, Watanabe K, Taniguchi T, Lee G H, Lee H J 2019 Nano Lett. 19 9002Google Scholar

    [43]

    Paul G C, Dutta P, Saha A 2017 J. Phys. Condens. Matter 29 015301Google Scholar

    [44]

    Ang Y S, Ang L K, Zhang C, Ma Z 2016 Phys. Rev. B 93 041422Google Scholar

    [45]

    Cayssol J 2008 Phys. Rev. Lett. 100 147001Google Scholar

    [46]

    Chen W, Shen R, Sheng L, Wang B G, Xing D Y 2011 Phys. Rev. B 84 115420Google Scholar

    [47]

    Liu Y, Yu Z M, Liu J, Jiang H, Yang S A 2018 Phys. Rev. B 98 195141Google Scholar

    [48]

    Li X S, Zhang S F, Sun X R, Gong W J 2018 New J. Phys. 20 103005Google Scholar

    [49]

    O’Brien T E, Diez M, Beenakker C W J 2016 Phys. Rev. Lett. 116 236401Google Scholar

    [50]

    Burkov A A, Balents L 2011 Phys. Rev. Lett. 107 127205Google Scholar

    [51]

    Wehling T O, Black-Schafferc A, Balatsky A V 2014 Adv. Phys. 63 1Google Scholar

    [52]

    De Gennes P G 1966 Superconductivity of Metals and Alloys (New York: Benjamin) pp137–160

    [53]

    Li H, Ouyang G 2019 Phys. Rev. B 100 085410Google Scholar

    [54]

    Blonder G E, Tinkham M, Klapwijk T M 1982 Phys. Rev. B 25 4515Google Scholar

  • [1] 代雪峰, 贡同. 铁磁性电极条件下T形双量子点结构中马约拉纳束缚态的解耦现象.  , 2024, 73(5): 057301. doi: 10.7498/aps.73.20231434
    [2] 初纯光, 王安琦, 廖志敏. 拓扑半金属-超导体异质结的约瑟夫森效应.  , 2023, 72(8): 087401. doi: 10.7498/aps.72.20230397
    [3] 王素新, 李玉现, 王宁, 刘建军. 耦合Majorana束缚态T形双量子点中的Andreev反射.  , 2016, 65(13): 137302. doi: 10.7498/aps.65.137302
    [4] 套格图桑, 白玉梅. 第二类变系数KdV方程的新类型无穷序列精确解.  , 2012, 61(6): 060201. doi: 10.7498/aps.61.060201
    [5] 傅正平, 林峰, 朱星. 一维金属光栅的光学反射吸收.  , 2011, 60(11): 114213. doi: 10.7498/aps.60.114213
    [6] 郁华玲. 超导邻近效应在正常金属层中引起的反常小能隙现象.  , 2007, 56(10): 6038-6044. doi: 10.7498/aps.56.6038
    [7] 李晓薇, 刘淑静. 正常金属/自旋三重态p波超导体结隧道谱的奇异性.  , 2006, 55(2): 834-838. doi: 10.7498/aps.55.834
    [8] 魏健文, 董正超. 正常金属/绝缘层/s波超导隧道结中绝缘层对微分电导的影响.  , 2005, 54(5): 2318-2324. doi: 10.7498/aps.54.2318
    [9] 李晓薇. 正常金属-绝缘层-铁磁/超导结微分电导峰的Zeeman劈裂.  , 2005, 54(5): 2313-2317. doi: 10.7498/aps.54.2313
    [10] 巴音贺希格. 衍射光栅的第二类角色散及其特性分析.  , 2004, 53(7): 2118-2122. doi: 10.7498/aps.53.2118
    [11] 张毅, 薛纭. 仅含第二类约束的约束Hamilton系统的Lie对称性.  , 2001, 50(5): 816-819. doi: 10.7498/aps.50.816
    [12] 刘 峰, 阎守胜. 非理想第二类超导体局域磁弛豫的计算模拟:非均匀钉扎势和表面势垒影响.  , 2000, 49(9): 1829-1837. doi: 10.7498/aps.49.1829
    [13] 董正超, 陈贵宾, 邢定钰, 董锦明. 铁磁-绝缘层-d波超导结中的Andreev反射特性.  , 2000, 49(11): 2276-2280. doi: 10.7498/aps.49.2276
    [14] 董正超. 正常金属-铁磁绝缘层-d波超导结中的磁散射对量子输运的影响.  , 1999, 48(12): 2357-2363. doi: 10.7498/aps.48.2357
    [15] 董正超. 磁多层金属系统的界面反射效应.  , 1999, 48(11): 2116-2124. doi: 10.7498/aps.48.2116
    [16] 董正超. 正常金属-d波超导隧道结中杂质和界面散射对微分电导的影响.  , 1999, 48(5): 926-935. doi: 10.7498/aps.48.926
    [17] 吴杭生, 顾一鸣. 理想第二类超导薄膜的纵场临界电流.  , 1983, 32(5): 607-617. doi: 10.7498/aps.32.607
    [18] 冯克安, 蔡俊道, 蒲富恪. 天线理论中的第二类积分方程.  , 1978, 27(2): 187-202. doi: 10.7498/aps.27.187
    [19] 李宏成. 第二类超导体的临界磁场.  , 1965, 21(3): 560-568. doi: 10.7498/aps.21.560
    [20] 吴杭生. 过渡金属的超导电理论.  , 1964, 20(7): 696-698. doi: 10.7498/aps.20.696
计量
  • 文章访问数:  4828
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-21
  • 修回日期:  2021-12-07
  • 上网日期:  2022-05-31
  • 刊出日期:  2022-06-20

/

返回文章
返回
Baidu
map