搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向SF6气体绝缘设备故障检测的光声CO气体传感器设计和优化

尹旭坤 董磊 武红鹏 刘丽娴 邵晓鹏

引用本文:
Citation:

面向SF6气体绝缘设备故障检测的光声CO气体传感器设计和优化

尹旭坤, 董磊, 武红鹏, 刘丽娴, 邵晓鹏

Design and optimization of photoacoustic CO gas sensor for fault diagnosis of SF6 gas insulated equipment

Yin Xu-Kun, Dong Lei, Wu Hong-Peng, Liu Li-Xian, Shao Xiao-Peng
PDF
HTML
导出引用
  • 针对电力系统对六氟化硫电气绝缘设备中气体衍生物的在线高精度探测需要, 提出了差分双通道结构的光声池作为光声探测模块, 并使用中心波长为2.3 μm的分布式反馈(distributed feedback laser, DFB)激光器作为激励光源, 搭建了一款工作在高浓度六氟化硫背景气体中的一氧化碳气体传感器. 通过光声共振理论模拟和设计, 在纯六氟化硫气体中光声池的品质因子为84, 相对于在氮气载气中的品质因子提高了约4倍. 经实验验证, 差分结构光声池的最大气体流速较单共振腔光声池提高了6倍, 且具有较强的噪声免疫能力. 在对传感器系统的共振频率、气流速度和工作压强等参数优化后, 在1 s的积分时间下, 获得一氧化碳气体的探测灵敏度为体积分数1.18 × 10–6, 对应的归一化噪声等效浓度(1σ)为3.68 × 10–8 cm–1·W·Hz–1/2. 该传感器的灵敏度高, 选择性好且噪声免疫能力强, 可以为电力系统中潜在性绝缘故障诊断提供一种在线探测技术, 具有重要的应用前景.
    Trace gas analysis for SF6 decomposition is a powerful diagnostic method to identify partial discharge problem occurring in electrical equipment. In particular, it is recognized that the SF6 decomposition gases (such as CO, H2S, SO2 and CF4) can effectively determine the inner insulation condition of the electrical equipment. Currently, most of researches of diagnostic methods cannot meet the online high-precision detection of gas derivatives in SF6 electrical insulation equipment. Therefore, there is a need of developing a sensitive, selective and cost-effective sensor system for CO detection in an SF6 buffer gas environment due to the fact that the power system is filled with pure SF6 as the dielectric gas, which means that the concentration of SF6 is usually > 99.8%. The traditional photoacoustic CO gas sensors cannot be directly used in power system, since several SF6 physical constants strongly differ from those of N2 or air. In addition, SF6 molecule reveals uninterrupted and strong absorption lines in the mid-infrared spectral region. In this work, a CO gas sensor working in high concentration SF6 background gas is designed by using a distributed feedback (DFB) laser as an excitation source with a center wavelength of 2.3 μm. The absorption line strength of 2.3 μm is ~ two orders of magnitude higher than the absorption line strength around 1.56 μm, which can improve the sensor detection performance. A background-gas-induced high-Q differential photoacoustic cell is simulated numerically and tested experimentally. The quality factor of the designed photoacoustic cell in pure SF6 gas is 85, which is ~ 4 times higher than that in N2 carrier gas. The experimental results show that the maximum gas flow rate of the differential structure photoacoustic cell is ~ 6 times higher than that of the single resonant cavity photoacoustic cell. After optimizing the resonance frequency, gas velocity and working pressure of the sensor system, the detection sensitivity of the volume fraction of 1.85 × 10–6 is achieved. In the case of the volume fraction of 50 × 10–6 CO/SF6 gas mixture, the maximum photoacoustic signal amplitude of 19.6 μV is obtained, the corresponding normalized noise equivalent concentration (1σ) is 3.68 × 10–8 cm–1·W·Hz1/2 in 1 s integration time. A linear fitting is implemented to evaluate the response of the sensor from 50 × 10–6 to 1000 × 10–6, resulting in an R square value of 0.9997. The CO photoacoustic gas sensor has high sensitivity, good selectivity and strong noise immunity, which can provide an on-line detection technology for potential insulation fault diagnosis in the power system. The capability of CO gas sensor can be improved by using a higher excitation optical output power and/or reducing the PAC resonator volume to increase the cell constant.
      通信作者: 董磊, donglei@sxu.edu.cn ; 邵晓鹏, xpshao@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62075119, 61975254, 61805187, 61805132)和广东省基础与应用基础研究基金(批准号: 2020A1515111012)资助的课题
      Corresponding author: Dong Lei, donglei@sxu.edu.cn ; Shao Xiao-Peng, xpshao@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62075119, 61975254, 61805187, 61805132) and the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2020A1515111012)
    [1]

    张晓星, 孟凡生, 唐炬, 杨冰 2012 61 156101Google Scholar

    Zhang X X, Meng F S, Tang J, Yang B 2012 Acta Phys. Sin. 61 156101Google Scholar

    [2]

    Kurte R, Beyer C, Heise H, Klockow D 2002 Anal. Bioanal. Chem. 373 639Google Scholar

    [3]

    Yin X K, Dong L, Wu H P, Ma W G, Zhang L, Yin W B, Xiao L T, Jia S T, Tittel F K 2017 Appl. Phys. Lett. 111 031109Google Scholar

    [4]

    Yin X K, Dong L, Wu H P, et al. 2017 Opt. Express 25 32581Google Scholar

    [5]

    Zhang X X, Liu H, Ren J B, Li J, Li X 2015 Spectrochim. Acta, Part A 136 884Google Scholar

    [6]

    Heise H M, Kurte R, Fischer P, Klockow D, Janissek P R 1997 Fresenius J. Anal. Chem. 358 793Google Scholar

    [7]

    Wang P Y, Chen W G, Wang J X, Tang J, Shi Y L, Wan F 2020 Anal. Chem. 92 5969Google Scholar

    [8]

    Cui R Y, Dong L, Wu H P, et al. 2018 Opt. Express 26 24318Google Scholar

    [9]

    Zheng H D, Liu Y H, Lin H Y, et al. 2020 Photoacoustics 17 100158Google Scholar

    [10]

    周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明 2018 57 084201Google Scholar

    Zhou Y, Cao Y, Zhu G D, Liu K, Tan T, Wang L J, Gao X M 2018 Acta Phys. Sin. 57 084201Google Scholar

    [11]

    Ma Y F, Yu X, Yu G, Li X D, Zhang J B, Cheng D Y, Sun R, Titttel F K 2015 Appl. Phys. Lett. 107 021106Google Scholar

    [12]

    尹旭坤, 郑华丹, 董磊, 武红鹏, 刘小利, 马维光, 张雷, 尹王保, 贾锁堂 2015 64 130701Google Scholar

    Yin X K, Zheng H D, Dong L, Wu H P, Liu X L, Ma W G, Zhang L, Yin W B, Jia S T 2015 Acta Phys. Sin. 64 130701Google Scholar

    [13]

    Hu L, Zheng C T, Zheng J, Wang Y D, Tittel F K 2019 Opt. Lett. 44 2562Google Scholar

    [14]

    Wang Z, Wang Q, Ching J Y, Wu J C, Zhang G F, Ren W 2017 Sens. Actuators, B 246 710Google Scholar

    [15]

    陈珂, 袁帅, 宫振峰, 于清旭 2018 中国激光 45 0911012Google Scholar

    Chen K, Yuan S, Gong Z F, Yu Q X 2018 Chin. J. Las. 45 0911012Google Scholar

    [16]

    Zhang X, Cheng Z, Li X 2016 Infrared Phys. Technol. 78 31Google Scholar

    [17]

    Luo J, Fang Y, Zhao Y, Wang A, Li D, Li Y, Liu Y, Cui F, Wu J, Liu J 2015 Anal. Methods 7 1200Google Scholar

    [18]

    Sun B, Zifarelli A, Wu H P, Russo S D, Li S Z, Patimisco P, Dong L, Spagnolo V 2020 Anal. Chem. 92 13922Google Scholar

    [19]

    Yin X K, Wu H P, Dong L, et al. 2019 Sens. Actuators, B 282 567Google Scholar

    [20]

    Li Z L, Wang Z, Qi Y, Jin W, Ren W 2017 Sens. Actuators, B 248 1023Google Scholar

    [21]

    He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2019 Opt. Laser Technol. 115 129Google Scholar

    [22]

    Li S Z, Dong L, Wu H P, Sampaolo A, Patimisco P, Spagnolo V, Tittel F K 2019 Anal. Chem. 91 5834Google Scholar

    [23]

    Yin X K, Wu H P, Dong L, Li B, Ma W G, Zhang L, Yin W B, Xiao L T, Jia S T, Tittel F K 2020 ACS Sens. 5 549Google Scholar

    [24]

    Wu H P, Dong L, Zheng H D, et al. 2017 Nat. Commun. 8 15331Google Scholar

    [25]

    Gong Z F, Gao T L, Mei L, Chen K, Chen Y W, Zhang B, Peng W, Yu Q X 2021 Photoacoustics 21 100216Google Scholar

    [26]

    Cao Y, Liu K, Wang R F, Chen W D, Gao X M 2021 Opt. Express 29 2258Google Scholar

  • 图 1  纯SF6气体和0.1% CO/N2气体混合物在1—10 μm波长区域的红外吸收谱线; 插图: 在2.28—2.42 μm波长区域放大的吸收谱线

    Fig. 1.  The infrared absorbance spectrum cures of pure SF6 and 0.1% CO/N2 gas mixture between 1–10 μm wavelength region; Insert: The enlarged view of absorbance spectrum between 2.28–2.42 μm region.

    图 2  CO和H2O气体在4260—4308 cm–1波数范围的吸收线位置和对应的吸收线强度

    Fig. 2.  The absorption line positions and line strengths of CO and H2O gas between 4260–4308 cm–1.

    图 3  在SF6载气下的CO气体传感器装置示意图

    Fig. 3.  Schematic of CO gas sensor system in SF6 buffer gas.

    图 4  在0.1% CO/SF6和0.1% CO/N2载气下的光声池频率响应曲线

    Fig. 4.  Frequency response curves of photoacoustic cell in 0.1% CO/SF6 and 0.1% CO/N2.

    图 5  单通道和双通道光声池在不同SF6气体流速下的信号和噪声响应

    Fig. 5.  Sensor system noise and signal amplitude of the single-resonator and the double-resonator photoacoustic cells in different SF6 gas flow rate.

    图 6  在体积分数为500 × 10–6的CO/SF6气体中光声信号与气体压强的线性响应图

    Fig. 6.  Linear response of photoacoustic signal and gas pressure in the volume fraction of 500 × 10–6 CO/SF6 gas.

    图 7  不同CO/SF6气体浓度下的光声信号幅值响应

    Fig. 7.  Photoacoustic signal in different CO/SF6 gas concentrations.

    图 8  CO/SF6气体传感器的响应线性度

    Fig. 8.  Linearity of CO/SF6 gas sensor system.

    Baidu
  • [1]

    张晓星, 孟凡生, 唐炬, 杨冰 2012 61 156101Google Scholar

    Zhang X X, Meng F S, Tang J, Yang B 2012 Acta Phys. Sin. 61 156101Google Scholar

    [2]

    Kurte R, Beyer C, Heise H, Klockow D 2002 Anal. Bioanal. Chem. 373 639Google Scholar

    [3]

    Yin X K, Dong L, Wu H P, Ma W G, Zhang L, Yin W B, Xiao L T, Jia S T, Tittel F K 2017 Appl. Phys. Lett. 111 031109Google Scholar

    [4]

    Yin X K, Dong L, Wu H P, et al. 2017 Opt. Express 25 32581Google Scholar

    [5]

    Zhang X X, Liu H, Ren J B, Li J, Li X 2015 Spectrochim. Acta, Part A 136 884Google Scholar

    [6]

    Heise H M, Kurte R, Fischer P, Klockow D, Janissek P R 1997 Fresenius J. Anal. Chem. 358 793Google Scholar

    [7]

    Wang P Y, Chen W G, Wang J X, Tang J, Shi Y L, Wan F 2020 Anal. Chem. 92 5969Google Scholar

    [8]

    Cui R Y, Dong L, Wu H P, et al. 2018 Opt. Express 26 24318Google Scholar

    [9]

    Zheng H D, Liu Y H, Lin H Y, et al. 2020 Photoacoustics 17 100158Google Scholar

    [10]

    周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明 2018 57 084201Google Scholar

    Zhou Y, Cao Y, Zhu G D, Liu K, Tan T, Wang L J, Gao X M 2018 Acta Phys. Sin. 57 084201Google Scholar

    [11]

    Ma Y F, Yu X, Yu G, Li X D, Zhang J B, Cheng D Y, Sun R, Titttel F K 2015 Appl. Phys. Lett. 107 021106Google Scholar

    [12]

    尹旭坤, 郑华丹, 董磊, 武红鹏, 刘小利, 马维光, 张雷, 尹王保, 贾锁堂 2015 64 130701Google Scholar

    Yin X K, Zheng H D, Dong L, Wu H P, Liu X L, Ma W G, Zhang L, Yin W B, Jia S T 2015 Acta Phys. Sin. 64 130701Google Scholar

    [13]

    Hu L, Zheng C T, Zheng J, Wang Y D, Tittel F K 2019 Opt. Lett. 44 2562Google Scholar

    [14]

    Wang Z, Wang Q, Ching J Y, Wu J C, Zhang G F, Ren W 2017 Sens. Actuators, B 246 710Google Scholar

    [15]

    陈珂, 袁帅, 宫振峰, 于清旭 2018 中国激光 45 0911012Google Scholar

    Chen K, Yuan S, Gong Z F, Yu Q X 2018 Chin. J. Las. 45 0911012Google Scholar

    [16]

    Zhang X, Cheng Z, Li X 2016 Infrared Phys. Technol. 78 31Google Scholar

    [17]

    Luo J, Fang Y, Zhao Y, Wang A, Li D, Li Y, Liu Y, Cui F, Wu J, Liu J 2015 Anal. Methods 7 1200Google Scholar

    [18]

    Sun B, Zifarelli A, Wu H P, Russo S D, Li S Z, Patimisco P, Dong L, Spagnolo V 2020 Anal. Chem. 92 13922Google Scholar

    [19]

    Yin X K, Wu H P, Dong L, et al. 2019 Sens. Actuators, B 282 567Google Scholar

    [20]

    Li Z L, Wang Z, Qi Y, Jin W, Ren W 2017 Sens. Actuators, B 248 1023Google Scholar

    [21]

    He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2019 Opt. Laser Technol. 115 129Google Scholar

    [22]

    Li S Z, Dong L, Wu H P, Sampaolo A, Patimisco P, Spagnolo V, Tittel F K 2019 Anal. Chem. 91 5834Google Scholar

    [23]

    Yin X K, Wu H P, Dong L, Li B, Ma W G, Zhang L, Yin W B, Xiao L T, Jia S T, Tittel F K 2020 ACS Sens. 5 549Google Scholar

    [24]

    Wu H P, Dong L, Zheng H D, et al. 2017 Nat. Commun. 8 15331Google Scholar

    [25]

    Gong Z F, Gao T L, Mei L, Chen K, Chen Y W, Zhang B, Peng W, Yu Q X 2021 Photoacoustics 21 100216Google Scholar

    [26]

    Cao Y, Liu K, Wang R F, Chen W D, Gao X M 2021 Opt. Express 29 2258Google Scholar

  • [1] 刘丽娴, 陈柏松, 张乐, 章学仕, 宦惠庭, 尹旭坤, 邵晓鹏, 马欲飞, MandelisAndreas. 面向工业园区的多组分痕量气体光声光谱同时检测.  , 2022, 71(17): 170701. doi: 10.7498/aps.71.20220613
    [2] 马欲飞. 基于石英增强光声光谱的气体传感技术研究进展.  , 2021, 70(16): 160702. doi: 10.7498/aps.70.20210685
    [3] 靳华伟, 胡仁志, 谢品华, 陈浩, 李治艳, 王凤阳, 王怡慧, 林川. 适用于ppb量级NO2检测的低功率蓝光二极管光声技术研究.  , 2019, 68(7): 070703. doi: 10.7498/aps.68.20182262
    [4] 程刚, 曹渊, 刘锟, 曹亚南, 陈家金, 高晓明. 光声光谱检测装置中光声池的数值计算及优化.  , 2019, 68(7): 074202. doi: 10.7498/aps.68.20182084
    [5] 刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生. 基于模场自积增强检测的光纤声光旋转传感器.  , 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [6] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明. 基于7.6 m量子级联激光的光声光谱探测N2O气体.  , 2018, 67(8): 084201. doi: 10.7498/aps.67.20172696
    [7] 林莹莹, 李葵英, 单青松, 尹华, 朱瑞苹. ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性.  , 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [8] 孙小亮, 陈长虹, 孟德佳, 冯士高, 于洪浩. 复合金属光栅模式分离与高性能气体传感器应用.  , 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [9] 刘进, 邹莹, 司福祺, 周海金, 窦科, 王煜, 刘文清. 基于差分吸收光谱技术的大气痕量气体二维观测方法.  , 2015, 64(16): 164209. doi: 10.7498/aps.64.164209
    [10] 尹旭坤, 郑华丹, 董磊, 武红鹏, 刘小利, 马维光, 张雷, 尹王保, 贾锁堂. 基于电学调制相消法和高功率蓝光LD的离轴石英增强光声光谱NO2传感器设计和优化.  , 2015, 64(13): 130701. doi: 10.7498/aps.64.130701
    [11] 刘研研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂. 全光型石英增强光声光谱.  , 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [12] 许雪梅, 戴鹏, 杨兵初, 尹林子, 曹建, 丁一鹏, 曹粲. 光声池中微弱光声信号检测.  , 2013, 62(20): 204303. doi: 10.7498/aps.62.204303
    [13] 余荣, 江月松, 余兰, 欧军. 利用散射光增强弱吸收固体混合物中主要光吸收物质的光声光谱特征.  , 2013, 62(8): 087802. doi: 10.7498/aps.62.087802
    [14] 许雪梅, 李奔荣, 杨兵初, 蒋礼, 尹林子, 丁一鹏, 曹粲. 基于光声光谱技术的NO,NO2气体分析仪研究.  , 2013, 62(20): 200704. doi: 10.7498/aps.62.200704
    [15] 袁长迎, 炎正馨, 蒙瑰, 李智慧, 尚丽平. 高浓度气体共振光声光谱信号饱和特性研究.  , 2010, 59(10): 6908-6913. doi: 10.7498/aps.59.6908
    [16] 李政颖, 王洪海, 姜宁, 程松林, 赵磊, 余鑫. 光纤气体传感器解调方法的研究.  , 2009, 58(6): 3821-3826. doi: 10.7498/aps.58.3821
    [17] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器.  , 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [18] 江 建, 饶云江, 周昌学, 朱 涛. 基于光放大的光纤Fizeau应变传感器频分复用系统.  , 2004, 53(7): 2221-2225. doi: 10.7498/aps.53.2221
    [19] 李宜德, 杜英磊, 李纪焕, 吴柏枚. 光声谱研究多孔碳化硅的能带特性.  , 2003, 52(5): 1260-1263. doi: 10.7498/aps.52.1260
    [20] 周岚, 张淑仪, 傅少伟, 王志, 张立德. 纳米SrTiO3的光声光谱研究.  , 1997, 46(5): 994-1000. doi: 10.7498/aps.46.994
计量
  • 文章访问数:  6177
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19
  • 修回日期:  2021-04-25
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回
Baidu
map