搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N掺杂对${\boldsymbol\beta} $-Ga2O3薄膜日盲紫外探测器性能的影响

周树仁 张红 莫慧兰 刘浩文 熊元强 李泓霖 孔春阳 叶利娟 李万俊

引用本文:
Citation:

N掺杂对${\boldsymbol\beta} $-Ga2O3薄膜日盲紫外探测器性能的影响

周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊

Effect of N-doping on performance of ${\boldsymbol\beta}$-Ga2O3 thin film solar-blind ultraviolet detector

Zhou Shu-Ren, Zhang Hong, Mo Hui-Lan, Liu Hao-Wen, Xiong Yuan-Qiang, Li Hong-Lin, Kong Chun-Yang, Ye Li-Juan, Li Wan-Jun
PDF
HTML
导出引用
  • 单斜氧化镓(β-Ga2O3)材料因其独特而优异的光电特性在日盲紫外探测领域具有广阔的应用前景, 受到国内外研究者的广泛关注. 本研究工作采用射频磁控溅射技术, 在c面蓝宝石衬底上制备了未掺杂和氮(N)掺杂β-Ga2O3薄膜, 研究了N掺杂对β-Ga2O3薄膜结构及光学特性的影响; 在此基础上, 构筑了未掺杂和N掺杂β-Ga2O3薄膜基金属-半导体-金属(metal-semiconductor-metal, MSM)型日盲紫外探测器, 并讨论了N掺杂影响器件性能的物理机制. 结果表明, N掺杂会导致β-Ga2O3薄膜表面形貌变得相对粗糙, 且会促使β-Ga2O3薄膜由直接带隙向间接带隙转变. 所有器件均表现出较高的稳定性和日盲特性, 相比之下, N掺杂β-Ga2O3薄膜器件能展现出较低的暗电流和更快的光响应速度(响应时间和恢复时间分别为40和8 ms), 与氧空位相关缺陷的抑制密切相关. 本研究对开发新型的高性能日盲紫外探测器具有一定的借鉴意义.
    β-Ga2O3-based deep-ultraviolet photodetector (PD) has versatile civil and military applications especially due to its inherent solar-blindness. In this work, pristine and N-doped β-Ga2O3 thin films are prepared on c-plane sapphire substrates by radio frequency magnetron sputtering. The influences of N impurity on the micromorphology, structural and optical properties of β-Ga2O3 film are investigated in detail by scanning electron microscopy, X-ray diffraction, and Raman spectra. The introduction of N impurities not only degrades the crystal quality of β-Ga2O3 films, but also affects the surface roughness. The β-Ga2O3 films doped with N undergoes a transition from a direct optical band gap to an indirect optical band gap. Then, the resulting metal-semiconductor-metal (MSM) PD is constructed. Comparing with the pure β-Ga2O3-based photodetector, the introduction of N impurities can effectively depress dark current and improve response speed of the β-Ga2O3 device. The N-doped β-Ga2O3-based photodetector achieves a dark current of 1.08 × 10–11 A and a fast response speed (rise time of 40 ms and decay time of 8 ms), which can be attributed to the decrease of oxygen vacancy related defects. This study demonstrates that the acceptor doping provides a new opportunity for producing ultraviolet photodetectors with fast response for further practical applications.
      通信作者: 张红, zhh_2016@163.com ; 叶利娟, ylj2592924@163.com ; 李万俊, liwj@cqnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11904041)、重庆市自然科学基金(批准号: cstc2020jcyj-msxmX0557, cstc2020jcyj-msxmX0533)和重庆市教育委员会科学技术研究项目(批准号: KJQN202000511, KJQN201900542)资助的课题
      Corresponding author: Zhang Hong, zhh_2016@163.com ; Ye Li-Juan, ylj2592924@163.com ; Li Wan-Jun, liwj@cqnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11904041), the Natural Science Foundation of Chongqing, China(Grant Nos. cstc2020jcyj-msxmX0557, cstc2020jcyj-msxmX0533), and the Science and Technology Research Project of Chongqing Education Committee, China(Grant Nos. KJQN202000511, KJQN201900542)
    [1]

    Pearton S J, Yang J C, Cary I V P H, Ren F, Kim J, Tadjer M J, Mastor M A 2018 Appl. Phys. Rev. 5 011301

    [2]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [3]

    Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar

    [4]

    Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [5]

    Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 191108Google Scholar

    [6]

    Kim J H, Han C Y, Lee K H, An K S, Song W, Kim J, Oh M S, Do Y R, Yang H 2014 Chem. Mater. 27 197

    [7]

    Liao M Y, Sang L, Teraji T, Imura M, Alvarez J, Koide Y 2012 Jpn. J. Appl. Phys. 51 090115Google Scholar

    [8]

    Chen J X, Li X X, Ma H P, Huang W, Ji Z G, Xia C T, Lu H L, Zhang D W 2019 ACS Appl. Mater. Interfaces 11 32127Google Scholar

    [9]

    Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C, Li W J 2019 J. Alloys Compd. 803 9Google Scholar

    [10]

    Zhang L H, Verma A, Xing H L, Jena D 2017 Jpn. J. Appl. Phys. 56 030304Google Scholar

    [11]

    马腾宇, 孔春阳, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 李泓霖, 叶利娟 2020 69 108102Google Scholar

    Ma T Y, Kong C Y, Li W J, He X W, Hu H, Huang L J, Zhang H, Li H L, Ye L J 2020 Acta Phys. Sin. 69 108102Google Scholar

    [12]

    Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P C, Tang W H 2014 Appl. Phys. Lett. 105 023507Google Scholar

    [13]

    Qin Y, Li L H, Zhao X L, Tompa G S, Dong H, Jian G Z, He Q M, Tan P J, Hou X H, Zhang Z F, Yu S J, Sun H D, Xu G W, Miao X S, Xue K H, Long S B, Liu M 2020 ACS Photonics 7 812Google Scholar

    [14]

    Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Liang F, Kong C Y, Li H L 2021 Opt. Mater. 112 110808Google Scholar

    [15]

    Wang Q, Chen J, Huang P, Li M, Lu Y, Homewood K P, Chang G, Chen H, He Y B 2019 Appl. Surf. Sci. 489 101Google Scholar

    [16]

    Hu H D, Liu Y C, Han G Q, Fang C Z, Zhang Y F, Liu H, Wang Y B, Ye J D, Hao Y 2020 Nanoscale Res. Lett. 15 100Google Scholar

    [17]

    Chen Y P, Liang H W, Xia X C, Shen R S, Liu Y, Luo Y M, Du G T 2015 Appl. Surf. Sci. 325 258Google Scholar

    [18]

    Guo D Y, Qin X Y, Lü M, Shi H Z, Su Y L, Yao G S, Wang S L, Li C R, Li P G, Tang W H 2017 Electron. Mater. Lett. 13 483Google Scholar

    [19]

    Chen J W, Tang H L, Liu B, Zhang Z X, Gu M, Zhu Z C, Xu Q, Xun J, Zhou L D, Chen L, Ou Yang X P 2021 ACS Appl. Mater. Interfaces 13 2879Google Scholar

    [20]

    Yao Z R, Tang K, Xu Z H, Ye J D, Zhun S M, Gu S L 2016 Nanoscale Res. Lett. 11 501Google Scholar

    [21]

    Saravanakumar B, Mohan R, Thiyagarajan K, Kim S J 2013 J. Alloys Compd. 580 538Google Scholar

    [22]

    Dong L P, Jia R X, Li C, Xin B, Zhang Y M 2017 J. Alloys Compd. 712 379Google Scholar

    [23]

    Chang L W, Li C F, Hsieh Y T, Liu C M, Cheng Y T, Yeh J W, Shih H C 2011 J. Electrochem. Soc. 158 D136Google Scholar

    [24]

    Jiang Z X, Wu Z Y, Ma C C, Deng J N, Zhang H, Xu Y, Ye J D, Fang Z L, Zhang G Q, Kang J Y, Zhang T Y 2020 Mater. Today Phys. 14 100226Google Scholar

    [25]

    Luan S Z, Dong L P, Ma X F, Jia R X 2020 J. Alloys Compd. 812 152026Google Scholar

    [26]

    Xie C, Lu X T, Liang Y, Chen H H, Wang L, Wu C Y, Wu D, Yang W H, Luo L B 2021 J. Mater. Sci. Technol. 72 189Google Scholar

    [27]

    Shen H, Baskaran K, Yin Y N, Tian K, Duan L B, Zhao X R, Tiwari A 2020 J. Alloys Compd. 822 153419Google Scholar

    [28]

    Rao R, Rao A M, Xu B, Dong J, Sharma S, Sunkara M K 2005 J. Appl. Phys. 98 094312

    [29]

    Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar

    [30]

    He T, Zhang X D, Ding X Y, Ding X Y, Sun C, Zhao Y K, Yu Q, Ning J Q, Wang R X, Yu G H, Lu S L, Zhang K, Zhang X P, Zhang B S 2019 Adv. Opt. Mater. 7 1801563Google Scholar

    [31]

    Song D Y, Li L, Li B S, Sui Y, Shen A D 2016 AIP Adv. 6 065016Google Scholar

    [32]

    Li W H, Zhao X L, Zhi Y S, Zhang X H, Chen Z W, Chu X L, Yang H J, Wu Z P, Tang W H 2018 Appl. Opt. 57 538Google Scholar

    [33]

    Fang M Z, Zhao W G, Li F F, Zhu D L, Han S, Xu W Y, Liu W J, Fang M, Lu Y M 2019 Sensors 20 129Google Scholar

    [34]

    Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Huang X K, Wang H, Wang S L, Li P G, Zhang X H, Tang W H 2017 Mater. Lett. 209 558Google Scholar

    [35]

    Zhao Z C, Yang C L, Meng Q T, Wang M S, Ma X G 2019 Spectrochim. Acta, Part A 211 71Google Scholar

    [36]

    Beaton D A, Alberi K, Fluegel B, Mascarenhas A, Reno J L 2013 Appl. Phys. Express 6 071201Google Scholar

    [37]

    Zhao W R, Yang Y, Hao R, Liu F F, Wang Y, Tan M, Tang J, Ren D Q, Zhao D Y 2011 J. Hazard. Mater. 192 1548Google Scholar

    [38]

    Zhao X L, Wu Z P, Zhi Y S, An Y H, Cui W, Li L H, Tang W H 2017 J. Phys. D: Appl. Phys. 50 085102Google Scholar

    [39]

    Liu L L, Li M K, Yu D Q, Zhang J, Zhang H, Qian C, Yang Z 2010 Appl. Phys. A 98 831

    [40]

    Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J, Huang F 2018 J. Alloys Compd. 735 150Google Scholar

    [41]

    Tak B R, Garg M, Dewan S, Torres-Castanedo C G, Li K H, Gupta V, Li X H, Singh R 2019 J. Appl. Phys. 125 144501Google Scholar

    [42]

    Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar

    [43]

    Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H, Schoenfeld W 2017 Phys. Status Solidi A 214 1600688Google Scholar

    [44]

    Yu M, Lü C D, Yu J G, Shen Y M, Yuan L, Hu J C, Zhang S G, Cheng H J, Zhang Y M, Jia R X 2020 Mater. Today Commun. 25 101532Google Scholar

  • 图 1  N掺杂β-Ga2O3薄膜的表面形貌和晶体结构 (a)—(d) SEM图; (e) XRD图谱; (f) Raman光谱

    Fig. 1.  Surface morphology and crystal structure of N-doped β-Ga2O3 films: (a)−(d) SEM; (e) XRD; (f) Raman spectra.

    图 2  (a)不同浓度N掺杂β-Ga2O3薄膜的透射光谱; (b), (c) 在直接和间接带隙下利用Tauc公式外推光学带隙图

    Fig. 2.  (a) Transmission spectra of β-Ga2O3 films doped with different N concentrations; (b), (c) Tauc plots for samples under assumptions of an indirect bandgap and a direct bandgap.

    图 3  (a)不同浓度N掺杂β-Ga2O3薄膜的室温光致发光谱; (b)局部放大图 (350−500 nm)

    Fig. 3.  (a) Room temperature PL spectra of N-doped β-Ga2O3 films; (b) local enlarged view ranging from 350 to 500 nm.

    图 4  β-Ga2O3薄膜MSM型日盲紫外器件的光电特性 (a), (b) I-V特性曲线; (c), (d) 瞬态光响应特性曲线(偏压为10 V); (e), (f) 光响应时间拟合曲线

    Fig. 4.  Photoresponse performance of the β-Ga2O3 film MSM photodetectors: (a), (b) I-V curves of the MSM photodetector; (c), (d) transient light response characteristic curve under the bias voltage of 10 V; (e), (f) exponential fitting of a single cycle at 10 V illuminated with 254 nm light.

    图 5  在254 nm光照下MSM型光电探测器的光响应能带示意图 (a)—(c)器件A; (d)—(f)器件C

    Fig. 5.  Schematic energy band diagrams of MSM photodetector of samples A and C under 254 nm light illumination: (a)−(c) device A; (d)−(f) device C.

    表 1  不同N掺杂浓度β-Ga2O3薄膜的(–201)衍射峰和201.4 cm–1拉曼特征峰的半高宽

    Table 1.  Full width at half maximum (FWHM) of XRD diffraction peak and Raman peak.

    SampleFWHM of (–201) peak/(°)FWHM of 201.4 cm–1
    peak/cm–1
    A0.382.6
    B0.513.08
    C0.392.9
    D0.583.14
    下载: 导出CSV

    表 2  国内外Ga2O3薄膜基光电探测器的主要性能指标对比

    Table 2.  Comparison of the representative photoresponse metrics based on Ga2O3 film photodetectors.

    SamplesGrowthIdark/nAτr/sτd/sRef.
    β-Ga2O3Sputtering0.11 (10 V)0.31/1.520.05/0.91[9]
    β-Ga2O3MOCVD34 (10 V)7.308.05[40]
    β-Ga2O3PLD~1.20.59/2.40.15/1.6[41]
    a-Ga2O3Sputtering0.3386 (10 V)0.41/2.040.02/0.35[42]
    Ga2O3:ZnSputtering45 (10 V)17.2/1.234.03/46.10[38]
    Ga2O3:ZnMOCVD23 (30 V)3.21.4[43]
    Ga2O3:NCVD~0.1 (5 V)0.010.01[24]
    Ga2O3:MgSputtering0.0041 (10 V)0.33/8.840.02[34]
    Ga2O3:CePLD0.87/10.810.54/13.98[32]
    α/β-Ga2O3Sol–gel0.125 (15 V)0.04/0.870.02/1.00[44]
    β-Ga2O3Sputtering0.56 (10 V)0.51/3.040.07/0.08This work
    Ga2O3:NSputtering0.0108 (10 V)0.04/2.380.008/0.29This work
    下载: 导出CSV
    Baidu
  • [1]

    Pearton S J, Yang J C, Cary I V P H, Ren F, Kim J, Tadjer M J, Mastor M A 2018 Appl. Phys. Rev. 5 011301

    [2]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [3]

    Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar

    [4]

    Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [5]

    Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 191108Google Scholar

    [6]

    Kim J H, Han C Y, Lee K H, An K S, Song W, Kim J, Oh M S, Do Y R, Yang H 2014 Chem. Mater. 27 197

    [7]

    Liao M Y, Sang L, Teraji T, Imura M, Alvarez J, Koide Y 2012 Jpn. J. Appl. Phys. 51 090115Google Scholar

    [8]

    Chen J X, Li X X, Ma H P, Huang W, Ji Z G, Xia C T, Lu H L, Zhang D W 2019 ACS Appl. Mater. Interfaces 11 32127Google Scholar

    [9]

    Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C, Li W J 2019 J. Alloys Compd. 803 9Google Scholar

    [10]

    Zhang L H, Verma A, Xing H L, Jena D 2017 Jpn. J. Appl. Phys. 56 030304Google Scholar

    [11]

    马腾宇, 孔春阳, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 李泓霖, 叶利娟 2020 69 108102Google Scholar

    Ma T Y, Kong C Y, Li W J, He X W, Hu H, Huang L J, Zhang H, Li H L, Ye L J 2020 Acta Phys. Sin. 69 108102Google Scholar

    [12]

    Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P C, Tang W H 2014 Appl. Phys. Lett. 105 023507Google Scholar

    [13]

    Qin Y, Li L H, Zhao X L, Tompa G S, Dong H, Jian G Z, He Q M, Tan P J, Hou X H, Zhang Z F, Yu S J, Sun H D, Xu G W, Miao X S, Xue K H, Long S B, Liu M 2020 ACS Photonics 7 812Google Scholar

    [14]

    Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Liang F, Kong C Y, Li H L 2021 Opt. Mater. 112 110808Google Scholar

    [15]

    Wang Q, Chen J, Huang P, Li M, Lu Y, Homewood K P, Chang G, Chen H, He Y B 2019 Appl. Surf. Sci. 489 101Google Scholar

    [16]

    Hu H D, Liu Y C, Han G Q, Fang C Z, Zhang Y F, Liu H, Wang Y B, Ye J D, Hao Y 2020 Nanoscale Res. Lett. 15 100Google Scholar

    [17]

    Chen Y P, Liang H W, Xia X C, Shen R S, Liu Y, Luo Y M, Du G T 2015 Appl. Surf. Sci. 325 258Google Scholar

    [18]

    Guo D Y, Qin X Y, Lü M, Shi H Z, Su Y L, Yao G S, Wang S L, Li C R, Li P G, Tang W H 2017 Electron. Mater. Lett. 13 483Google Scholar

    [19]

    Chen J W, Tang H L, Liu B, Zhang Z X, Gu M, Zhu Z C, Xu Q, Xun J, Zhou L D, Chen L, Ou Yang X P 2021 ACS Appl. Mater. Interfaces 13 2879Google Scholar

    [20]

    Yao Z R, Tang K, Xu Z H, Ye J D, Zhun S M, Gu S L 2016 Nanoscale Res. Lett. 11 501Google Scholar

    [21]

    Saravanakumar B, Mohan R, Thiyagarajan K, Kim S J 2013 J. Alloys Compd. 580 538Google Scholar

    [22]

    Dong L P, Jia R X, Li C, Xin B, Zhang Y M 2017 J. Alloys Compd. 712 379Google Scholar

    [23]

    Chang L W, Li C F, Hsieh Y T, Liu C M, Cheng Y T, Yeh J W, Shih H C 2011 J. Electrochem. Soc. 158 D136Google Scholar

    [24]

    Jiang Z X, Wu Z Y, Ma C C, Deng J N, Zhang H, Xu Y, Ye J D, Fang Z L, Zhang G Q, Kang J Y, Zhang T Y 2020 Mater. Today Phys. 14 100226Google Scholar

    [25]

    Luan S Z, Dong L P, Ma X F, Jia R X 2020 J. Alloys Compd. 812 152026Google Scholar

    [26]

    Xie C, Lu X T, Liang Y, Chen H H, Wang L, Wu C Y, Wu D, Yang W H, Luo L B 2021 J. Mater. Sci. Technol. 72 189Google Scholar

    [27]

    Shen H, Baskaran K, Yin Y N, Tian K, Duan L B, Zhao X R, Tiwari A 2020 J. Alloys Compd. 822 153419Google Scholar

    [28]

    Rao R, Rao A M, Xu B, Dong J, Sharma S, Sunkara M K 2005 J. Appl. Phys. 98 094312

    [29]

    Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar

    [30]

    He T, Zhang X D, Ding X Y, Ding X Y, Sun C, Zhao Y K, Yu Q, Ning J Q, Wang R X, Yu G H, Lu S L, Zhang K, Zhang X P, Zhang B S 2019 Adv. Opt. Mater. 7 1801563Google Scholar

    [31]

    Song D Y, Li L, Li B S, Sui Y, Shen A D 2016 AIP Adv. 6 065016Google Scholar

    [32]

    Li W H, Zhao X L, Zhi Y S, Zhang X H, Chen Z W, Chu X L, Yang H J, Wu Z P, Tang W H 2018 Appl. Opt. 57 538Google Scholar

    [33]

    Fang M Z, Zhao W G, Li F F, Zhu D L, Han S, Xu W Y, Liu W J, Fang M, Lu Y M 2019 Sensors 20 129Google Scholar

    [34]

    Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Huang X K, Wang H, Wang S L, Li P G, Zhang X H, Tang W H 2017 Mater. Lett. 209 558Google Scholar

    [35]

    Zhao Z C, Yang C L, Meng Q T, Wang M S, Ma X G 2019 Spectrochim. Acta, Part A 211 71Google Scholar

    [36]

    Beaton D A, Alberi K, Fluegel B, Mascarenhas A, Reno J L 2013 Appl. Phys. Express 6 071201Google Scholar

    [37]

    Zhao W R, Yang Y, Hao R, Liu F F, Wang Y, Tan M, Tang J, Ren D Q, Zhao D Y 2011 J. Hazard. Mater. 192 1548Google Scholar

    [38]

    Zhao X L, Wu Z P, Zhi Y S, An Y H, Cui W, Li L H, Tang W H 2017 J. Phys. D: Appl. Phys. 50 085102Google Scholar

    [39]

    Liu L L, Li M K, Yu D Q, Zhang J, Zhang H, Qian C, Yang Z 2010 Appl. Phys. A 98 831

    [40]

    Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J, Huang F 2018 J. Alloys Compd. 735 150Google Scholar

    [41]

    Tak B R, Garg M, Dewan S, Torres-Castanedo C G, Li K H, Gupta V, Li X H, Singh R 2019 J. Appl. Phys. 125 144501Google Scholar

    [42]

    Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar

    [43]

    Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H, Schoenfeld W 2017 Phys. Status Solidi A 214 1600688Google Scholar

    [44]

    Yu M, Lü C D, Yu J G, Shen Y M, Yuan L, Hu J C, Zhang S G, Cheng H J, Zhang Y M, Jia R X 2020 Mater. Today Commun. 25 101532Google Scholar

  • [1] 张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志. 氧化镓悬臂式薄膜日盲探测器及其电弧检测应用.  , 2024, 73(9): 098501. doi: 10.7498/aps.73.20240186
    [2] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器.  , 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [3] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能.  , 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [4] 李磊, 支钰崧, 张茂林, 刘增, 张少辉, 马万煜, 许强, 沈高辉, 王霞, 郭宇锋, 唐为华. 关于Ga2O3/Al0.1Ga0.9N同型异质结的双波段、双模式紫外探测性能分析.  , 2023, 72(2): 027301. doi: 10.7498/aps.72.20221738
    [5] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器.  , 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [6] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器.  , 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [7] 刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟. Cu掺杂β-Ga2O3薄膜的制备及紫外探测性能.  , 2023, 72(19): 198503. doi: 10.7498/aps.72.20230971
    [8] 李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰. 薄膜厚度对射频磁控溅射${\boldsymbol{\beta}}$-Ga2O3薄膜光电性能的影响.  , 2022, 71(4): 048501. doi: 10.7498/aps.71.20211744
    [9] 李秀华, 张敏. 薄膜厚度对射频磁控溅射β-Ga2O3薄膜光电性能的影响*.  , 2021, (): . doi: 10.7498/aps.70.20211744
    [10] 玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊. 基于云母衬底生长的非晶Ga2O3柔性透明日盲紫外光探测器研究.  , 2021, 70(23): 238502. doi: 10.7498/aps.70.20211039
    [11] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华. 超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展.  , 2019, 68(7): 078501. doi: 10.7498/aps.68.20181845
    [12] 蔡梦圆, 唐春梅, 张秋月. Li离子电池负极材料石墨炔在B, N掺杂调控下的储Li性能优化.  , 2019, 68(21): 213601. doi: 10.7498/aps.68.20191161
    [13] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光. 不同N掺杂构型石墨烯的量子电容研究.  , 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [14] 祁晓萌, 彭文博, 赵小龙, 贺永宁. 基于高阻ZnO薄膜的光电导型紫外探测器.  , 2015, 64(19): 198501. doi: 10.7498/aps.64.198501
    [15] 张孝富, 李豫东, 郭旗, 罗木昌, 何承发, 于新, 申志辉, 张兴尧, 邓伟, 吴正新. 60Coγ射线对高铝组分Al0.5Ga0.5N基p-i-n日盲型光探测器理想因子的影响.  , 2013, 62(7): 076106. doi: 10.7498/aps.62.076106
    [16] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响.  , 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [17] 邓懿, 赵德刚, 吴亮亮, 刘宗顺, 朱建军, 江德生, 张书明, 梁骏吾. 器件参数对GaN基n+-GaN/i-Alx Ga1-xN/n+-GaN结构紫外和红外双色探测器中紫外响应的影响.  , 2010, 59(12): 8903-8909. doi: 10.7498/aps.59.8903
    [18] 徐 凌, 唐超群, 戴 磊, 唐代海, 马新国. N掺杂锐钛矿TiO2电子结构的第一性原理研究.  , 2007, 56(2): 1048-1053. doi: 10.7498/aps.56.1048
    [19] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究.  , 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] 赖云锋, 冯 洁, 乔保卫, 凌 云, 林殷茵, 汤庭鳌, 蔡炳初, 陈邦明. 氮掺杂Ge2Sb2Te5相变存储器的多态存储功能.  , 2006, 55(8): 4347-4352. doi: 10.7498/aps.55.4347
计量
  • 文章访问数:  7256
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-06
  • 修回日期:  2021-04-22
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回
Baidu
map