-
拉曼光产生技术是量子精密测量领域的一个重要研究内容, 是冷原子重力仪、冷原子陀螺仪等量子惯性传感器的关键技术. 对于铷87原子, 需要两束频差6.834 GHz且相位稳定的780 nm激光来产生拉曼光. 基于两台外腔式780 nm激光器, 并利用光学锁相环技术可以产生拉曼光, 但系统复杂、环境适应性不强. 基于内腔式1560 nm激光器, 通过倍频和电光调制技术也可以产生拉曼光, 虽然系统简单、环境适应性强, 但测量性能受边带效应影响. 受限于内腔式激光器的线宽及反馈带宽性能, 一般无法利用光学锁相环方法来产生拉曼光. 鉴于此, 本文基于两台新型外腔式1560 nm激光器和自制锁相电路系统, 实现了一套低相噪的拉曼光系统, 相位噪声功率谱在1—10 kHz频段低至–95 dBc/Hz. 通过与780 nm双激光器及混合双激光器锁相性能进行比较, 发现该方案略具优势. 此外, 通过分段积分的方法分析了该锁相性能对冷原子干涉仪相位噪声的影响. 本文实验结果为研制小型化、外场适用的拉曼光系统提供了一种方案.The technology of generating Raman laser is not only an important research content in the field of quantum precision measurement, but also a core technology of quantum inertial sensors such as cold atom gravimeter, gyroscope. For 87Rb atoms, two 780-nm lasers with a frequency difference of 6.834 GHz and a stable phase are needed to generate Raman light. Raman lasers can be generated by optical phase-locked loops of two 780-nm narrow linewidth external cavity tunable semiconductor lasers (ECDL). But the system thus developed is complicated in structure and very poor in environmental adaptability. The other method to generate Raman laser is based on intracavity 1560-nm laser with frequency doubling and electro-optic modulation technology. This system is simple in structure and strong in environmental adaptability, but it will introduce sideband effects and cannot achieve phase lock due to the limit by the linewidth and feedback bandwidth performance of the laser. In view of this, based on two new 1560-nm external cavity lasers and a home-made phase-locked circuit, in this paper the phase lock of the laser is achieved, and a Raman laser with low phase noise is obtained. The phase noise of beat note signal is as low as –95 dBc/Hz at the Fourier frequency in a range from 1 kHz to 10 kHz. A comparison of this system with the phase-locked performance of the 780-nm dual laser and the hybrid dual laser shows that this scheme has a slight advantage. In addition, the effect of the phase-locking performance on the phase noise of the cold atom interferometer through the method of piecewise integration is analyzed in this work. The experimental results given in this work provide a scheme for developing a miniaturized Raman optical system suitable for external fields.
-
Keywords:
- cold atom /
- atom interferometer /
- Raman lasers
[1] Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar
[2] Zhou L, Long S T, Tang B, Chen X, Gao F, Peng W C, Duan W T, Zhong J Q, Xiong Z Y, Wang J, Zhang Y Z, Zhan M S 2015 Phys. Rev. Lett. 115 013004Google Scholar
[3] Tino G M, Cacciapuoti L, Capozziello S, Lambiase G, Sorrentino F 2020 Prog. Part. Nucl. Phys. 112 103772Google Scholar
[4] Hamilton P, Jaffe M, Haslinger P, Simmons Q, Muller H, Khoury J 2015 Science 349 849Google Scholar
[5] Jaffe M, Haslinger P, Xu V, Hamilton P, Upadhye A, Elder B, Khoury J, Muller H 2017 Nat. Phys. 13 938Google Scholar
[6] Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar
[7] Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar
[8] McGuirk J M, Foster G T, Fixler J B, Snadden M J, Kasevich M A 2002 Phys. Rev. A 65 033608Google Scholar
[9] Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y H, Prevedelli M, Rosi G, Salvi L, Tino G M 2014 Phys. Rev. A 89 023607Google Scholar
[10] Dutta I, Savoie D, Fang B, Venon B, Alzar C L G, Geiger R, Landragin A 2016 Phys. Rev. Lett. 116 183003Google Scholar
[11] Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046Google Scholar
[12] Lautier J, Volodimer L, Hardin T, Merlet S, Lours M, Dos Santos F P, Landragin A 2014 Appl. Phys. Lett. 105 144102Google Scholar
[13] Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar
[14] Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar
[15] Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar
[16] Wu B, Wang Z Y, Cheng B, Wang Q Y, Xu A P, Lin Q 2014 Metrologia 51 452Google Scholar
[17] Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar
[18] Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300Google Scholar
[19] Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar
[20] Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar
[21] Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar
[22] Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar
[23] Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar
[24] Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar
[25] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 69 060302Google Scholar
Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar
[26] Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 2Google Scholar
[27] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 70 040304Google Scholar
Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar
[28] Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar
[29] Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar
[30] Luo Q, Zhang H, Zhang K, Duan X C, Hu Z K, Chen L L, Zhou M K 2019 Rev. Sci. Instrum. 90 043104Google Scholar
[31] Zhu L X, Lien Y H, Hinton A, Niggebaum A, Rammeloo C, Bongs K, Holynski M 2018 Opt. Express 26 6542Google Scholar
[32] Fang J, Hu J, Chen X, Zhu H, Zhou L, Zhong J, Wang J, Zhan M 2018 Opt. Express 26 1586Google Scholar
[33] Theron F, Bidel Y, Dieu E, Zahzam N, Cadoret M, Bresson A 2017 Opt. Commun. 393 152Google Scholar
[34] Diboune C, Zahzam N, Bidel Y, Cadoret M, Bresson A 2017 Opt. Express 25 16898Google Scholar
[35] Theron F, Carraz O, Renon G, Zahzam N, Bidel Y, Cadoret M, Bresson A 2015 Appl. Phys. B 118 1Google Scholar
[36] Lévèque T, Antoni-Micollier L, Faure B, Berthon J 2014 Appl. Phys. B 116 997Google Scholar
[37] Menoret V, Geiger R, Stern G, Zahzam N, Battelier B, Bresson A, Landragin A, Bouyer P 2011 Opt. Lett. 36 4128Google Scholar
[38] Carraz O, Lienhart F, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2009 Appl. Phys. B 97 405Google Scholar
[39] Lienhart F, Boussen S, Carraz O, Zahzam N, Bidel Y, Bresson A 2007 Appl. Phys. B 89 177Google Scholar
[40] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强 2019 68 194205Google Scholar
Wu B, Cheng B, Fu Z J, Zhu D, Wu L M, Wang K N, Wang H L, Wang Z Y, Wang X L, Lin Q 2019 Acta Phys. Sin. 68 194205Google Scholar
[41] Le Gouet J, Kim J, Bourassin-Bouchet C, Lours M, Landragin A, Dos Santos F P 2009 Opt. Commun. 282 977Google Scholar
[42] Schmidt M, Prevedelli M, Giorgini A, Tino G M, Peters A 2011 Appl. Phys. B 102 11Google Scholar
[43] Yim S H, Lee S B, Kwon T Y, Park S E 2014 Appl. Phys. B 115 491
[44] Yim S H, Lee S B, Kwon T Y, Shim K M, Park S E 2019 Appl. Opt. 58 2481Google Scholar
[45] Ristic S, Bhardwaj A, Rodwell M J, Coldren L A, Johansson L A 2010 J. Lightwave Technol. 28 526Google Scholar
[46] Numata K, Chen J R, Wu S T 2012 Opt. Express 20 14234Google Scholar
[47] Friederich F, Schuricht G, Deninger A, Lison F, Spickermann G, Bolivar P H, Roskos H G 2010 Opt. Express 18 8621Google Scholar
[48] Guionie M, Frein L, Bondu F, Carre A, Loas G, Pinsard E, Cadier B, Alouini M, Romanelli M, Vallet M, Brunel M 2018 Fiber Lasers and Glass Photonics: Materials through Applications Strasbourg, France, April 22−26, 2018 p10683
[49] Rouse C D, Brown A W, Wylie M T V, Colpitts B G 2011 21st International Conference on Optical Fiber Sensors Ottawa, Canada, May 15−19, 2011 p77532L
-
图 3 实验系统示意图. 1560 nm FL1, 光纤激光器; 1560 nm FL2, 外腔式光纤输出型激光器; 780 nm DL1和780 nm DL2, 外腔式激光器; ISO, 隔离器; EDFA, 掺铒光纤放大器; PPLN, 周期性铌酸锂晶体; FM, 频率调制光谱; PD, 高速光电管; Amp, 低噪声放大器; Beat signal, 拍频信号;
${\Phi }\; \mathrm{l}\mathrm{o}\mathrm{c}\mathrm{k}$ , 相位锁定方法; SA, 频谱分析仪; PFD, 频率相位检测模块; PID, 比例积分微分控制模块; DDS, 直接数字合成器; Frequency Ref, 频率参考; /2, 二分频; Current, 电流调制口; PZT, 压电陶瓷调制口; PDRO, 锁相介质振荡器Fig. 3. Schematic diagram of the experimental system. 1560 nm FL1, fiber laser; 1560 nm FL2, fibered laser; 780 nm DL1 and 780 nm DL2, external cavity diode laser; ISO, isolator; EDFA, erbium-doped fiber amplifier; PPLN, periodic lithium niobate crystal; FM, frequency modulation spectroscopy; PD, high-speed photodiode; Amp, low noise amplifier; Beat signal, Beatnote signal;
$ \varPhi \;\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{k}, $ phase locking method; SA, spectrum analyzer; PFD, frequency phase detector module; PID, the module of proportional integral derivative controller; DDS, direct digital synthesizer; Frequency Ref, frequency reference; /2, two-way frequency; Current, current modulation port; PZT, piezoelectric ceramic modulation port; PDRO, phase locked dielectric resonator oscillator. -
[1] Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar
[2] Zhou L, Long S T, Tang B, Chen X, Gao F, Peng W C, Duan W T, Zhong J Q, Xiong Z Y, Wang J, Zhang Y Z, Zhan M S 2015 Phys. Rev. Lett. 115 013004Google Scholar
[3] Tino G M, Cacciapuoti L, Capozziello S, Lambiase G, Sorrentino F 2020 Prog. Part. Nucl. Phys. 112 103772Google Scholar
[4] Hamilton P, Jaffe M, Haslinger P, Simmons Q, Muller H, Khoury J 2015 Science 349 849Google Scholar
[5] Jaffe M, Haslinger P, Xu V, Hamilton P, Upadhye A, Elder B, Khoury J, Muller H 2017 Nat. Phys. 13 938Google Scholar
[6] Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar
[7] Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar
[8] McGuirk J M, Foster G T, Fixler J B, Snadden M J, Kasevich M A 2002 Phys. Rev. A 65 033608Google Scholar
[9] Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y H, Prevedelli M, Rosi G, Salvi L, Tino G M 2014 Phys. Rev. A 89 023607Google Scholar
[10] Dutta I, Savoie D, Fang B, Venon B, Alzar C L G, Geiger R, Landragin A 2016 Phys. Rev. Lett. 116 183003Google Scholar
[11] Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046Google Scholar
[12] Lautier J, Volodimer L, Hardin T, Merlet S, Lours M, Dos Santos F P, Landragin A 2014 Appl. Phys. Lett. 105 144102Google Scholar
[13] Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar
[14] Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar
[15] Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar
[16] Wu B, Wang Z Y, Cheng B, Wang Q Y, Xu A P, Lin Q 2014 Metrologia 51 452Google Scholar
[17] Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar
[18] Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300Google Scholar
[19] Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar
[20] Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar
[21] Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar
[22] Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar
[23] Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar
[24] Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar
[25] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 69 060302Google Scholar
Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar
[26] Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 2Google Scholar
[27] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 70 040304Google Scholar
Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar
[28] Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar
[29] Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar
[30] Luo Q, Zhang H, Zhang K, Duan X C, Hu Z K, Chen L L, Zhou M K 2019 Rev. Sci. Instrum. 90 043104Google Scholar
[31] Zhu L X, Lien Y H, Hinton A, Niggebaum A, Rammeloo C, Bongs K, Holynski M 2018 Opt. Express 26 6542Google Scholar
[32] Fang J, Hu J, Chen X, Zhu H, Zhou L, Zhong J, Wang J, Zhan M 2018 Opt. Express 26 1586Google Scholar
[33] Theron F, Bidel Y, Dieu E, Zahzam N, Cadoret M, Bresson A 2017 Opt. Commun. 393 152Google Scholar
[34] Diboune C, Zahzam N, Bidel Y, Cadoret M, Bresson A 2017 Opt. Express 25 16898Google Scholar
[35] Theron F, Carraz O, Renon G, Zahzam N, Bidel Y, Cadoret M, Bresson A 2015 Appl. Phys. B 118 1Google Scholar
[36] Lévèque T, Antoni-Micollier L, Faure B, Berthon J 2014 Appl. Phys. B 116 997Google Scholar
[37] Menoret V, Geiger R, Stern G, Zahzam N, Battelier B, Bresson A, Landragin A, Bouyer P 2011 Opt. Lett. 36 4128Google Scholar
[38] Carraz O, Lienhart F, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2009 Appl. Phys. B 97 405Google Scholar
[39] Lienhart F, Boussen S, Carraz O, Zahzam N, Bidel Y, Bresson A 2007 Appl. Phys. B 89 177Google Scholar
[40] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强 2019 68 194205Google Scholar
Wu B, Cheng B, Fu Z J, Zhu D, Wu L M, Wang K N, Wang H L, Wang Z Y, Wang X L, Lin Q 2019 Acta Phys. Sin. 68 194205Google Scholar
[41] Le Gouet J, Kim J, Bourassin-Bouchet C, Lours M, Landragin A, Dos Santos F P 2009 Opt. Commun. 282 977Google Scholar
[42] Schmidt M, Prevedelli M, Giorgini A, Tino G M, Peters A 2011 Appl. Phys. B 102 11Google Scholar
[43] Yim S H, Lee S B, Kwon T Y, Park S E 2014 Appl. Phys. B 115 491
[44] Yim S H, Lee S B, Kwon T Y, Shim K M, Park S E 2019 Appl. Opt. 58 2481Google Scholar
[45] Ristic S, Bhardwaj A, Rodwell M J, Coldren L A, Johansson L A 2010 J. Lightwave Technol. 28 526Google Scholar
[46] Numata K, Chen J R, Wu S T 2012 Opt. Express 20 14234Google Scholar
[47] Friederich F, Schuricht G, Deninger A, Lison F, Spickermann G, Bolivar P H, Roskos H G 2010 Opt. Express 18 8621Google Scholar
[48] Guionie M, Frein L, Bondu F, Carre A, Loas G, Pinsard E, Cadier B, Alouini M, Romanelli M, Vallet M, Brunel M 2018 Fiber Lasers and Glass Photonics: Materials through Applications Strasbourg, France, April 22−26, 2018 p10683
[49] Rouse C D, Brown A W, Wylie M T V, Colpitts B G 2011 21st International Conference on Optical Fiber Sensors Ottawa, Canada, May 15−19, 2011 p77532L
计量
- 文章访问数: 5826
- PDF下载量: 142
- 被引次数: 0