搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

百微米精度的单光子测距

吴琛怡 汪琳莉 施皓天 王煜蓉 潘海峰 李召辉 吴光

引用本文:
Citation:

百微米精度的单光子测距

吴琛怡, 汪琳莉, 施皓天, 王煜蓉, 潘海峰, 李召辉, 吴光

Single-photon ranging with hundred-micron accuracy

Wu Chen-Yi, Wang Lin-Li, Shi Hao-Tian, Wang Yu-Rong, Pan Hai-Feng, Li Zhao-Hui, Wu Guang
PDF
HTML
导出引用
  • 本文发展了一种基于高精度单光子探测器的激光测距方法, 实现了百微米量级精度的非合作目标激光测距. 单光子测距系统引入参考位置, 有效地抑制了系统延时漂移, 使光子飞行时间测量精度达到0.5 ps, 在2 m测距距离处, 单光子测距系统的测距精度达到65 µm@RMS. 这项工作达到了当前脉冲飞行时间测距最高精度水平, 为远距离非合作目标高精度测距和成像提供了一种有效的技术.
    Single-photon detectors based on avalanche photodiodes and time-correlated single-photon counting technology are widely used in pulsed laser ranging. The ranging accuracy is one of the most important performances of laser ranging. In this work, a laser ranging method based on high-precision single-photon detector is developed to achieve laser ranging for non-cooperative targets with hundred-micron-level ranging accuracy. In the system, a low-time jitter Si APD single photon detector, picosecond pulsed laser and high-precision timing counter are used to reduce the time jitter of the ranging system, and a reference position is added to suppress the influence of delay drift of the system. And a laser interferometer system with a ranging resolution of 1 nm and an accuracy of 0.5 ppm is used to calibrate the distance of each movement of the ranging target. The photon flight time accuracy of 0.5 ps is achieved while the integral time ≥ 3 s. The ranging accuracy of 65 μm@RMS is realized, while the target is 2 m away. This work is one of the highest levels of pulsed time-of-flight ranging, and provides an effective technology for high-precision ranging and imaging of long-range non-cooperative targets.
      通信作者: 吴光, gwu@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11804099, 11774095)和国家重点研发计划(批准号: 2016YFB0400900)资助的课题
      Corresponding author: Wu Guang, gwu@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804099, 11774095) and the National Key R&D Program of China (Grant No. 2016YFB0400900)
    [1]

    Warburton R E, McCarthy A, Wallace A M, Hernandez-Marin S, Hadfield R H, Nam S W, Buller G S 2007 Opt. Lett. 32 2266Google Scholar

    [2]

    Cova S, Ghioni M, Lacaita A, Samori C, Zappa F 1996 Appl. Opt. 35 1956Google Scholar

    [3]

    Massa J S, Wallace A M, Buller G S, Fancey S J, Walker A C 1997 Opt. Lett. 22 543Google Scholar

    [4]

    Massa J S, Buller G S, Walker A C, Cova S, Umasuthan M, Wallace A M 1998 Appl. Opt. 37 7298Google Scholar

    [5]

    Pellegrini S, Buller G S, Smith J M, Wallace A M, Cova S 2000 Meas. Sci. Technol. 11 712Google Scholar

    [6]

    Ren M, Gu X R, Liang Y, Kong W B, Wu E, Wu G, Zeng H P 2011 Opt. Express 19 13497Google Scholar

    [7]

    张忠萍, 张海峰, 吴志波, 李朴, 孟文东, 陈菊平, 庞毓 2014 中国激光 41 s108005Google Scholar

    Zhang Z P, Zhang H F, Wu Z B, Li P, Meng W D, Chen J P, Pang Y 2014 Chin. J. Las. 41 s108005Google Scholar

    [8]

    孟文东, 汤凯, 邓华荣, 李朴, 张海峰, 吴志波, 张忠萍 2015 光学学报 35 s112006

    Meng W D, Tang K, Deng H R, Li P, Zhang H F, Wu Z B, Zhang Z P 2015 Acta Opt. Sin. 35 s112006

    [9]

    Gariepy G, Tonolini F, Henderson R, Leach J, Faccio D 2016 Nat. Photonics 10 23Google Scholar

    [10]

    Li Z H, Wu E, Pang C K, Du B C, Tao Y L, Peng H, Zeng H P, Wu G 2017 Opt. Express 25 10189Google Scholar

    [11]

    Du B C, Wang Y, Wu E, Chen X L, Wu G 2018 Opt. Commun. 426 89Google Scholar

    [12]

    Zheng T X, Shen G Y, Li Z H, Yang L, Zhang H Y, Wu E, Wu G 2019 Photonics Res. 7 1381Google Scholar

    [13]

    孟文东, 张海峰, 邓华荣, 汤凯, 吴志波, 王煜蓉, 吴光, 张忠萍, 陈欣扬 2020 69 019502Google Scholar

    Meng W D, Zhang H F, Deng H R, Tang K, Wu Z B, Wang Y R, Wu G, Zhang Z P, Yang X Y 2020 Acta Phys. Sin. 69 019502Google Scholar

    [14]

    Ye L, Gu G H, He W J, Dai H D, Mao T Y, Chen Q 2019 J. Opt. 21 045703Google Scholar

    [15]

    Fu C K, Zheng H B, Wang G, Zhou Y, Chen H, He Y C, Liu J B, Sun J, Xu Z 2020 Appl. Sci. 10 1930Google Scholar

    [16]

    Carreira J F C, Griffitns A D, Xie E, Guilhabert B J E, Herrnsdorf J, Henderson R K, Gu E, Strain M J, Dawson M D 2020 Opt. Express 28 6909Google Scholar

    [17]

    Morimoto K, Ardelean A, Wu M L, Ulku A C, Antolovic I M, Bruschini C, Charbon E 2020 Optica 7 346Google Scholar

    [18]

    Griffiths A D, Chen H, Li D D U, Henderson R K, Herrnsdorf J, Dawson M D, Strain M J 2019 Opt. Express 27 35485Google Scholar

    [19]

    Rehain P, Sua Y M, Zhu S Y, Dickson I, Muthuswamy B, Ramanathan J, Shahverdi A, Huang Y P 2020 Nat. Commun. 11 921Google Scholar

    [20]

    Shahverdi A, Sua Y M, Tumeh L, Huang Y P 2017 Sci. Rep. 7 6495Google Scholar

    [21]

    Ma J H, Hu H Q, Chen Y, Xu G J, Pan H F, Wu E 2020 Chin. Phys. Lett. 37 034202

    [22]

    Wu W J, Ma J H, Pan H F, Wu E, Chen H X, Dismas K C, Liang W G 2017 Optoelectron. Lett. 13 156Google Scholar

    [23]

    张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光 2020 69 074204Google Scholar

    Zhang H Y, Wang L L, Wu C Y, Wang Y R, Yang L, Pan H F, Liu Q L, Guo X, Tang K, Zhang Z P, Wu G 2020 Acta Phys. Sin. 69 074204Google Scholar

    [24]

    Fouche D G 2003 Appl. Opt. 42 5388Google Scholar

    [25]

    Wang F, Zhao Y, Zhang Y, Sun X D 2010 Appl. Opt. 49 5561Google Scholar

    [26]

    Kong H J, Kim T H, Jo S E, Oh M S 2011 Opt. Express. 19 19323Google Scholar

    [27]

    Gatt P, Johnson S, Nichols T 2009 Appl. Opt. 48 3261Google Scholar

    [28]

    黄科, 李松, 马跃, 田昕, 周辉, 张智宇 2018 67 064205Google Scholar

    Huang K, Li S, Ma Y, Tian X, Zhou H, Zhang Z Y 2018 Acta Phys. Sin. 67 064205Google Scholar

    [29]

    任旻 2013 博士学位论文 (上海: 华东师范大学)

    Ren M 2013 Ph D. Dissertation (Shanghai: East China Normal University) (in Chinese)

  • 图 1  单光子测距系统. L1: 聚焦透镜; R1, R2: 反射镜; BS1, BS2: 分束镜; PIN: 高速光电探测器; TCSPS: 时间相关单光子符合计数器

    Fig. 1.  Single-photon ranging system. L1: focusing lens; R1, R2: mirror; BS1, BS2: beam splitter; PIN: high-speed photodetector; TCSPS: time- correlated single-photon counter.

    图 2  测距系统时间抖动

    Fig. 2.  Time jitter of the ranging system.

    图 3  (a) 有无参考物测距系统在TCSPC中的数据示意图; (b) 固定状态下目标位置延时-时间图象; (c) 固定状态下参考位置延时-时间图象; (d) 固定状态下相对时间差-时间图象

    Fig. 3.  (a) Data schematic diagram of ranging system with or without reference in TCSPC; (b) delay-time image of target position in fixed state; (c) delay-time image of reference position in fixed state; (d) relative delay-time image in fixed state.

    图 4  某固定位置下参考位置与目标位置的光子计数-延时关系

    Fig. 4.  Photon-delay number relationship between reference position and target position in a fixed position.

    图 5  不同积分时间对应的时间精度

    Fig. 5.  Time accuracy corresponding to different integration times.

    图 6  单光子测距值与激光干涉仪位移测量值比较

    Fig. 6.  Comparison of the single-photon ranging and the displacement measurement of the laser interferometer.

    Baidu
  • [1]

    Warburton R E, McCarthy A, Wallace A M, Hernandez-Marin S, Hadfield R H, Nam S W, Buller G S 2007 Opt. Lett. 32 2266Google Scholar

    [2]

    Cova S, Ghioni M, Lacaita A, Samori C, Zappa F 1996 Appl. Opt. 35 1956Google Scholar

    [3]

    Massa J S, Wallace A M, Buller G S, Fancey S J, Walker A C 1997 Opt. Lett. 22 543Google Scholar

    [4]

    Massa J S, Buller G S, Walker A C, Cova S, Umasuthan M, Wallace A M 1998 Appl. Opt. 37 7298Google Scholar

    [5]

    Pellegrini S, Buller G S, Smith J M, Wallace A M, Cova S 2000 Meas. Sci. Technol. 11 712Google Scholar

    [6]

    Ren M, Gu X R, Liang Y, Kong W B, Wu E, Wu G, Zeng H P 2011 Opt. Express 19 13497Google Scholar

    [7]

    张忠萍, 张海峰, 吴志波, 李朴, 孟文东, 陈菊平, 庞毓 2014 中国激光 41 s108005Google Scholar

    Zhang Z P, Zhang H F, Wu Z B, Li P, Meng W D, Chen J P, Pang Y 2014 Chin. J. Las. 41 s108005Google Scholar

    [8]

    孟文东, 汤凯, 邓华荣, 李朴, 张海峰, 吴志波, 张忠萍 2015 光学学报 35 s112006

    Meng W D, Tang K, Deng H R, Li P, Zhang H F, Wu Z B, Zhang Z P 2015 Acta Opt. Sin. 35 s112006

    [9]

    Gariepy G, Tonolini F, Henderson R, Leach J, Faccio D 2016 Nat. Photonics 10 23Google Scholar

    [10]

    Li Z H, Wu E, Pang C K, Du B C, Tao Y L, Peng H, Zeng H P, Wu G 2017 Opt. Express 25 10189Google Scholar

    [11]

    Du B C, Wang Y, Wu E, Chen X L, Wu G 2018 Opt. Commun. 426 89Google Scholar

    [12]

    Zheng T X, Shen G Y, Li Z H, Yang L, Zhang H Y, Wu E, Wu G 2019 Photonics Res. 7 1381Google Scholar

    [13]

    孟文东, 张海峰, 邓华荣, 汤凯, 吴志波, 王煜蓉, 吴光, 张忠萍, 陈欣扬 2020 69 019502Google Scholar

    Meng W D, Zhang H F, Deng H R, Tang K, Wu Z B, Wang Y R, Wu G, Zhang Z P, Yang X Y 2020 Acta Phys. Sin. 69 019502Google Scholar

    [14]

    Ye L, Gu G H, He W J, Dai H D, Mao T Y, Chen Q 2019 J. Opt. 21 045703Google Scholar

    [15]

    Fu C K, Zheng H B, Wang G, Zhou Y, Chen H, He Y C, Liu J B, Sun J, Xu Z 2020 Appl. Sci. 10 1930Google Scholar

    [16]

    Carreira J F C, Griffitns A D, Xie E, Guilhabert B J E, Herrnsdorf J, Henderson R K, Gu E, Strain M J, Dawson M D 2020 Opt. Express 28 6909Google Scholar

    [17]

    Morimoto K, Ardelean A, Wu M L, Ulku A C, Antolovic I M, Bruschini C, Charbon E 2020 Optica 7 346Google Scholar

    [18]

    Griffiths A D, Chen H, Li D D U, Henderson R K, Herrnsdorf J, Dawson M D, Strain M J 2019 Opt. Express 27 35485Google Scholar

    [19]

    Rehain P, Sua Y M, Zhu S Y, Dickson I, Muthuswamy B, Ramanathan J, Shahverdi A, Huang Y P 2020 Nat. Commun. 11 921Google Scholar

    [20]

    Shahverdi A, Sua Y M, Tumeh L, Huang Y P 2017 Sci. Rep. 7 6495Google Scholar

    [21]

    Ma J H, Hu H Q, Chen Y, Xu G J, Pan H F, Wu E 2020 Chin. Phys. Lett. 37 034202

    [22]

    Wu W J, Ma J H, Pan H F, Wu E, Chen H X, Dismas K C, Liang W G 2017 Optoelectron. Lett. 13 156Google Scholar

    [23]

    张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光 2020 69 074204Google Scholar

    Zhang H Y, Wang L L, Wu C Y, Wang Y R, Yang L, Pan H F, Liu Q L, Guo X, Tang K, Zhang Z P, Wu G 2020 Acta Phys. Sin. 69 074204Google Scholar

    [24]

    Fouche D G 2003 Appl. Opt. 42 5388Google Scholar

    [25]

    Wang F, Zhao Y, Zhang Y, Sun X D 2010 Appl. Opt. 49 5561Google Scholar

    [26]

    Kong H J, Kim T H, Jo S E, Oh M S 2011 Opt. Express. 19 19323Google Scholar

    [27]

    Gatt P, Johnson S, Nichols T 2009 Appl. Opt. 48 3261Google Scholar

    [28]

    黄科, 李松, 马跃, 田昕, 周辉, 张智宇 2018 67 064205Google Scholar

    Huang K, Li S, Ma Y, Tian X, Zhou H, Zhang Z Y 2018 Acta Phys. Sin. 67 064205Google Scholar

    [29]

    任旻 2013 博士学位论文 (上海: 华东师范大学)

    Ren M 2013 Ph D. Dissertation (Shanghai: East China Normal University) (in Chinese)

  • [1] 沈姗姗, 顾国华, 陈钱, 何睿清, 曹青青. 时空域联合编码扩频单光子计数成像方法.  , 2023, 72(2): 024202. doi: 10.7498/aps.72.20221438
    [2] 赵华良, 彭红玲, 周旭彦, 张建心, 牛博文, 尚肖, 王天财, 曹澎. InP衬底上的双载流子倍增雪崩光电二极管结构设计.  , 2023, 72(19): 198502. doi: 10.7498/aps.72.20230885
    [3] 王菊, 邵琦, 于晋龙, 何可瑞, 罗浩, 马闯, 蔡滋恒, 郑紫月, 蔡奔. 基于二次强度调制的激光测距系统.  , 2023, 72(22): 220601. doi: 10.7498/aps.72.20230997
    [4] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5—10 µm波段超导单光子探测器设计与研制.  , 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [5] 孟文东, 张海峰, 邓华荣, 汤凯, 吴志波, 王煜蓉, 吴光, 张忠萍, 陈欣扬. 基于1.06 μm波长的空间合作目标及碎片高精度激光测距试验.  , 2020, 69(1): 019502. doi: 10.7498/aps.69.20191299
    [6] 张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光. 高时间稳定性的雪崩光电二极管单光子探测器.  , 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [7] 谢田元, 王菊, 王子雄, 马闯, 于洋, 李天宇, 方杰, 于晋龙. 基于交替起振光电振荡器的大量程高精度绝对距离测量技术.  , 2019, 68(13): 130601. doi: 10.7498/aps.68.20190238
    [8] 李天信, 翁钱春, 鹿建, 夏辉, 安正华, 陈张海, 陈平平, 陆卫. 量子点操控的光子探测和圆偏振光子发射.  , 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [9] 黄科, 李松, 马跃, 田昕, 周辉, 张智宇. 单光子激光测距的漂移误差理论模型及补偿方法.  , 2018, 67(6): 064205. doi: 10.7498/aps.67.20172228
    [10] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法.  , 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [11] 肖洋, 于晋龙, 王菊, 王文睿, 王子雄, 谢田元, 于洋, 薛纪强. 二次偏振调制测距系统中调制频率与测距精度的关系.  , 2016, 65(10): 100601. doi: 10.7498/aps.65.100601
    [12] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响.  , 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [13] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究.  , 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [14] 黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强. 基于二次偏振调制的变频测距方法与系统实现.  , 2014, 63(10): 100602. doi: 10.7498/aps.63.100602
    [15] 王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞. 一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析.  , 2013, 62(7): 070601. doi: 10.7498/aps.62.070601
    [16] 程楠, 黄刚锋, 王金东, 魏正军, 郭健平, 廖常俊, 刘颂豪. 同轴电缆反射方案单光子探测器的特性研究.  , 2010, 59(8): 5338-5344. doi: 10.7498/aps.59.5338
    [17] 王金东, 吴祖恒, 张 兵, 魏正军, 廖常俊, 刘颂豪. 用于红外单光子探测的雪崩光电二极管传输线抑制电路模型的理论分析.  , 2008, 57(9): 5620-5626. doi: 10.7498/aps.57.5620
    [18] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发.  , 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [19] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器.  , 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [20] 吴 光, 周春源, 陈修亮, 韩晓红, 曾和平. 长距离长期稳定的量子密钥分发系统.  , 2005, 54(8): 3622-3626. doi: 10.7498/aps.54.3622
计量
  • 文章访问数:  6029
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-26
  • 修回日期:  2021-02-16
  • 上网日期:  2021-08-23
  • 刊出日期:  2021-09-05

/

返回文章
返回
Baidu
map