搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米光子学结构对GaInAsSb p-n结红外光电性能的调控

皇甫夏虹 刘双飞 肖家军 张蓓 彭新村

引用本文:
Citation:

纳米光子学结构对GaInAsSb p-n结红外光电性能的调控

皇甫夏虹, 刘双飞, 肖家军, 张蓓, 彭新村

Modulating infrared optoelectronic performance of GaInAsSb p-n junction by nanophotonic structure

Huangfu Xia-Hong, Liu Shuang-Fei, Xiao Jia-Jun, Zhang Bei, Peng Xin-Cun
PDF
HTML
导出引用
  • GaInAsSb在红外光电领域具有重要应用价值, 但是窄带隙材料较高的本征载流子浓度和俄歇复合系数使其室温暗电流密度较高, 需要进行制冷才能获得满足应用要求的光电性能. 本文利用表面宽带隙半导体纳米柱阵列和背面高反射率金属对GaInAsSb p-n结有源区进行双面光调控, 将光限制在较薄的有源区进行吸收, 从而提升光电转换量子效率并降低室温暗电流. 采用时域有限差分方法仿真分析光学性能, 采用数值分析方法求解载流子输运方程以分析光电性能. 理论结果表明, 在当前工艺水平下, 双面光调控结构通过激发光学共振效应可以使厚度1 μm的Ga0.84In0.16As0.14Sb0.86 p-n结在1.0—2.3 μm红外波段的平均量子效率达到90%, 扩散暗电流密度可达5×10–6 A/cm2, 暗电流主要来自于表面复合, 俄歇复合的贡献较小.
    GaInAsSb quaternary alloys have attracted much interest in infrared optoelectronic applications due to their versatility in a large range of energy gaps from 0.296 eV to 0.726 eV when lattice matches to GaSb wafer. However, due to the high intrinsic carrier concentration and Auger recombination, GaInAsSb p-n junctions typically are characterized by high dark current density at room temperature and need to be operated at low temperature to obtain high optoelectronic performance. In this work, a front surface wide-bandgap semiconductor nano pillar array (NPA) and a high reflective metal back surface reflector (BSR) are designed to modulate optoelectronic performances of GaInAsSb p-n junction. The optical and optoelectronic characteristics are analyzed by the finite difference time domain simulation and the numerical solution of carrier transport equations, respectively. It shows that the NPA-BSR structure can trigger Mie-type resonance, Wood-Rayleigh anomaly effect and Fabry-Perot resonance, which can be used to trap the light efficiently in an ultrathin GaInAsSb film. Owing to these nanophotonic effects, the average light absorption of ~90% can be obtained in 1.0–2.3 μm infrared waveband for 1μm Ga0.84In0.16As0.14Sb0.86. It also shows that the Auger recombination can be suppressed with thickness decreasing which leads the carrier collection efficiency to increase and the dark current density to decrease. Theoretical results show that the carrier collection efficiency of ~99% and dark current density of ~5×10–6 A/cm2 can be obtained for the 1 μm Ga0.84In0.16As0.14Sb0.86 p-n junction. With these unique optoelectronic properties, the NPA-BSR nanophotonic structure can become a very promising method to realize the high performance ultrathin GaInAsSb infrared optoelectronic devices.
      通信作者: 彭新村, xcpeng@ecit.cn
    • 基金项目: 国家自然科学基金(批准号: 62061001, 61204071)和江西省自然科学基金(批准号: 20202BAB202013)资助的课题
      Corresponding author: Peng Xin-Cun, xcpeng@ecit.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62061001, 61204071) and the Jiangxi Provincial Natural Science Foundation, China (Grant No. 20202BAB202013)
    [1]

    刘超 魏志鹏 安宁 何斌太 刘鹏程 刘国军 2014 63 248102Google Scholar

    Liu C, Wei Z P, An N, He B T, Liu P C, Liu G J 2014 Acta Phys. Sin. 63 248102Google Scholar

    [2]

    Mitsuhara M, Ohiso Y, Matsuzaki H 2020 J. Cryst. Growth 535 125551Google Scholar

    [3]

    Hao H Y, Wang G W, Han X, Jiang D W, Sun, Y Y, Guo C Y, Xiang W, Xu Y Q and Niu Z C 2018 AIP Adv. 8 095106Google Scholar

    [4]

    Lou Y Y, Zhang X L, Huang A B, Wang Y 2018 Sol. Energ. Mat. Sol. C. 172 124

    [5]

    Liu Q, Marshall A, Kirer A 2019 Materials (Basel) 12 1743Google Scholar

    [6]

    Wang Y, Lou Y Y 2015 Renew. Energ. 75 8Google Scholar

    [7]

    You M H, Sun Q X, Yin L P, Fan J J, Liang X M, Li X, Yu X L, Li S J, Liu J S 2016 J. Nanomater. 2016 393502

    [8]

    Liang B L, Chen D Y, Wang B, Kwasniewski T A, Wang Z G 2010 IEEE T. Electron Dev. 57 361Google Scholar

    [9]

    Rothmayr F, Pfenning A, Kistner C, Koeth J, Knebl G, Schade A, Krueger S, Worschech L, Hartmann F, Höfling S 2018 Appl. Phys. Lett. 112 161107Google Scholar

    [10]

    Peng X C, Guo X, Zhang B L, Li X P, Zhao X W, Dong X, Zheng W, Du G T 2010 Infrared Phys. Techn. 53 37Google Scholar

    [11]

    秦飞飞 张海明 王彩霞 郭聪 张晶晶 2014 63 198802Google Scholar

    Qin F F, Zhang H M, Wang C X, Guo C, Zhang J J 2014 Acta Phys. Sin. 63 198802Google Scholar

    [12]

    El-Batawy Y M, Deen M J 2003 Proc. SPIE 4999 363Google Scholar

    [13]

    Jiang A Q, Osamu Y, Chen L Y 2020 SCI REP-UK 10 12780Google Scholar

    [14]

    Chen H L, Cattoni A, Lépinau R D, Walker A W, Höhn O, Lackner D, Siefer G, Faustini M, Vandamme N, Goffard J, Behaghel B, Dupuis C, Bardou N, Dimroth F, Collin S 2019 Nat. energy 4 761Google Scholar

    [15]

    Amalathas A P, Alkaisi M M 2019 Micromachines 10 619Google Scholar

    [16]

    Proise F, Joudrier A, Pardo F, Pelouard J, Guillemoles J 2018 Opt. Express 26 A806Google Scholar

    [17]

    Yang Z H, Gao P Q, Zhang C, Li X F, Ye J C 2016 SCI REP-UK 6 30503Google Scholar

    [18]

    Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S, Luk’yanchuk B 2016 Science 354 aag2472Google Scholar

    [19]

    Jahani S, Jacob Z 2016 Nat. Nanotechnol. 11 23Google Scholar

    [20]

    Behaghel B, Tamaki R, Vandamme N, Watanabe K, Dupuis C, Bardou N, Sodabanlu H, Cattoni A, Okada Y, Sugiyama M, Collin S, Guillemoles J 2015 Appl. Phys. Lett. 106 081107Google Scholar

    [21]

    Peng X C, Wang Z D, Liu Y, Manos D M, Poelker M, Stutzman M, Tang B, Zhang S K, Zou J J 2019 Phys. Rev. Appl. 12 064002Google Scholar

    [22]

    彭新村, 王智栋, 曾梦丝, 刘云, 邹继军, 朱志甫, 邓文娟 2019 无机材料学报 34 734Google Scholar

    Peng X C, Wang Z D, Zeng M S, Liu Y, Zou J J, Zhu Z F, Deng W J 2019 J. Inorg. Mater. 34 734Google Scholar

    [23]

    Wang C A, Shiau D A, Murphy P G, O'Brien P W, Huang R K, Connors M K, Anderson A C, Donetsky D, Anikeev S, Belenky G, Depoy D M, Nichols G 2004 J. Electron. Mater. 33 213Google Scholar

    [24]

    彭新村 王智栋 邓文娟 朱志甫 邹继军 张益军 2020 69 068501Google Scholar

    Peng X C, Wang Z D, Deng W J, Zhu Z F, Zou J J, Zhang Y J 2020 Acta Phys. Sin. 69 068501Google Scholar

    [25]

    Tian Y, Chua S J, Jin Y X 2003 Microelectron. J. 34 304

    [26]

    Peng X C, Poelker M, Stutzman M, Tang B, Zhang S K, Zou J J 2020 Opt. Express 28 860Google Scholar

    [27]

    Wang Y, Chen N F, Zhang X W, Huang T M, Yin Z G, Wang Y S, Zhang H 2010 Sol. Energ. Mat. Sol. C. 94 1704Google Scholar

    [28]

    Tang L L, Fraas L M, Liu Z M, Xu C, Chen X Y 2016 IEEE T. Electron Dev. 63 3591Google Scholar

    [29]

    Dashiell M W, Beausang J F, Ehsani H, Nichols G J, Depoy D M, Danielson L R, Talamo P, Rahner K D, Brown E J, Burger S R, Fourspring P M, Topper W F, Jr., Baldasaro P F, Wang C A, Huang R K, Connors M K, Turner G W, Shellenbarger Z A, Taylor G, Li J Z, Martinelli R, Donetski D, Anikeev S, Belenky G L, Luryi S 2006 IEEE T. Electron Dev. 53 2879Google Scholar

    [30]

    Groep J, Polman A 2013 Opt. Express 21 26285Google Scholar

    [31]

    Wang Z Y, Zhang R J, Wang S Y, Lu M, Chen X, Zheng Y X, Chen L Y, Ye Z, Wang C Z, Ho K M 2015 SCI REP-UK 5 7810Google Scholar

    [32]

    Wang C A 2004 AIP Conf. Proc. 738 255Google Scholar

  • 图 1  双面光调控Ga0.84In0.16As0.14Sb0.86 p-n结 (a)材料结构; (b)三维FDTD光学仿真设置

    Fig. 1.  Illustration of the two-side light modulation structured Ga0.84In0.16As0.14Sb0.86 p-n junction: (a) Material structure; (b) cross-section of the three-dimensional FDTD optical simulation setup.

    图 2  纳米柱直径D对Ga0.84In0.16As0.14Sb0.86 p-n结光学特性的影响 (a)表面反射谱; (b)有源区光吸收谱

    Fig. 2.  Effects of the nanopillar diameter D on the optical properties of the Ga0.84In0.16As0.14Sb0.86 p-n junction: (a) Surface reflectance spectrum; (b) absorption spectrum in active region.

    图 3  纳米柱填充因子F对Ga0.84In0.16As0.14Sb0.86 p-n结有源区的光吸收谱的影响

    Fig. 3.  Effects of the nanopillar fill factor F on the absorption of the Ga0.84In0.16As0.14Sb0.86 p-n junction active region.

    图 4  不同光学结构下Ga0.84In0.16As0.14Sb0.86 p-n结有源区的光吸收谱 (a)NPA和BSR双面光调控结构; (b)NPA单面光调控结构; (c)表面1/4波长Si3N4增透膜和BSR双面光调控结构; (d)表面1/4波长Si3N4增透膜单面光调控结构. 其中NPA尺寸为H = 300 nm, D = 540 nm, F = 0.6, Si3N4增透膜的中心波长设计为1.6 µm

    Fig. 4.  Absorption spectrums of the Ga0.84In0.16As0.14Sb0.86 p-n junction active region under different optical structures: (a) NPA-BSR two-side light modulation structure; (b) NPA one-side light modulation structure; (c) surface λ/4 Si3N4 anti-reflection film and BSR two-side light modulation structure; (d) surface λ/4 Si3N4 anti-reflection film one-side light modulation structure. The NPA geometry parameters are set as H = 300 nm, D = 540 nm and F = 0.6, central wavelength of the λ/4 Si3N4 anti-reflection film is set as 1.6 µm.

    图 5  室温(300 K)下Ga0.84In0.16As0.14Sb0.86 p-n结的IQE

    Fig. 5.  IQE for Ga0.84In0.16As0.14Sb0.86 p-n junction diode at 300 K.

    图 6  不同复合参数下载流子收集效率谱C(λ)随波长λ和有源区总厚度L的变化 (a) τ0 =1 µs, SF = SB = 102 cm/s; (b) τ0 =10–3 µs, SF = SB = 102 cm/s; (c) τ0 =1 µs, SF = 106 cm/s, SB = 102 cm/s; (d) τ0 =1 µs, SF = 102 cm/s, SB = 106 cm/s. τ0为SRH复合本征寿命, SFSB分别为有源区前后表面复合速度

    Fig. 6.  Dependence of the carrier collection efficiency spectrums C(λ) on λ and active region thickness L for different carrier recombination parameters: (a) τ0 =1 µs, SF = SB = 102 cm/s; (b) τ0 =10–3 µs, SF = SB = 102 cm/s; (c) τ0 =1 µs, SF = 106 cm/s, SB = 102 cm/s; (d) τ0 =1 µs, SF = 102 cm/s, SB = 106 cm/s.

    图 7  复合参数对不同厚度有源区量子效率谱QE(λ)的影响 (a) L = 1 µm; (b) L = 6 µm

    Fig. 7.  Effects of the carrier recombination parameters on the quantum efficiency spectrums for different active region thickness L: (a) L = 1 µm; (b) L = 6 µm.

    图 8  各种复合机制所决定的扩散暗电流密度随有源区厚度L的变化

    Fig. 8.  Dependence of the diffusion dark current densities on active region thickness L.

    图 9  室温下Ga0.84In0.16As0.14Sb0.86 p-n结的J0d随复合参数和L的变化

    Fig. 9.  Dependence of the J0d on carrier recombination parameters and L for Ga0.84In0.16As0.14Sb0.86 p-n junction at room temperature.

    表 1  室温(300 K)下Ga0.84In0.16As0.14Sb0.86 p-n结有源区的结构和物理参数[27-29]

    Table 1.  Structure and physical parameters of the Ga0.84In0.16As0.14Sb0.86 p-n junction at room temperature (300 K)[27-29].

    材料结构参数 物理参数
    厚度/µm掺杂浓
    度/cm–3
    直接复合系
    数/(cm3·s–1)
    俄歇复合系
    数/(cm6·s–1)
    SRH本征复
    合寿命/µs
    表面复合
    速度/(cm·s–1)
    少子迁移
    率/(cm2·V·s–1)
    n型层0.21 × 1017 1 × 10–10Cn = 1 × 10–27τ0 = 10–3—1SF = 0—106µh = 618
    p型层L—0.2 1 × 1017 Cp = 2 × 10–28SB = 0—106µe = 5162
    下载: 导出CSV
    Baidu
  • [1]

    刘超 魏志鹏 安宁 何斌太 刘鹏程 刘国军 2014 63 248102Google Scholar

    Liu C, Wei Z P, An N, He B T, Liu P C, Liu G J 2014 Acta Phys. Sin. 63 248102Google Scholar

    [2]

    Mitsuhara M, Ohiso Y, Matsuzaki H 2020 J. Cryst. Growth 535 125551Google Scholar

    [3]

    Hao H Y, Wang G W, Han X, Jiang D W, Sun, Y Y, Guo C Y, Xiang W, Xu Y Q and Niu Z C 2018 AIP Adv. 8 095106Google Scholar

    [4]

    Lou Y Y, Zhang X L, Huang A B, Wang Y 2018 Sol. Energ. Mat. Sol. C. 172 124

    [5]

    Liu Q, Marshall A, Kirer A 2019 Materials (Basel) 12 1743Google Scholar

    [6]

    Wang Y, Lou Y Y 2015 Renew. Energ. 75 8Google Scholar

    [7]

    You M H, Sun Q X, Yin L P, Fan J J, Liang X M, Li X, Yu X L, Li S J, Liu J S 2016 J. Nanomater. 2016 393502

    [8]

    Liang B L, Chen D Y, Wang B, Kwasniewski T A, Wang Z G 2010 IEEE T. Electron Dev. 57 361Google Scholar

    [9]

    Rothmayr F, Pfenning A, Kistner C, Koeth J, Knebl G, Schade A, Krueger S, Worschech L, Hartmann F, Höfling S 2018 Appl. Phys. Lett. 112 161107Google Scholar

    [10]

    Peng X C, Guo X, Zhang B L, Li X P, Zhao X W, Dong X, Zheng W, Du G T 2010 Infrared Phys. Techn. 53 37Google Scholar

    [11]

    秦飞飞 张海明 王彩霞 郭聪 张晶晶 2014 63 198802Google Scholar

    Qin F F, Zhang H M, Wang C X, Guo C, Zhang J J 2014 Acta Phys. Sin. 63 198802Google Scholar

    [12]

    El-Batawy Y M, Deen M J 2003 Proc. SPIE 4999 363Google Scholar

    [13]

    Jiang A Q, Osamu Y, Chen L Y 2020 SCI REP-UK 10 12780Google Scholar

    [14]

    Chen H L, Cattoni A, Lépinau R D, Walker A W, Höhn O, Lackner D, Siefer G, Faustini M, Vandamme N, Goffard J, Behaghel B, Dupuis C, Bardou N, Dimroth F, Collin S 2019 Nat. energy 4 761Google Scholar

    [15]

    Amalathas A P, Alkaisi M M 2019 Micromachines 10 619Google Scholar

    [16]

    Proise F, Joudrier A, Pardo F, Pelouard J, Guillemoles J 2018 Opt. Express 26 A806Google Scholar

    [17]

    Yang Z H, Gao P Q, Zhang C, Li X F, Ye J C 2016 SCI REP-UK 6 30503Google Scholar

    [18]

    Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S, Luk’yanchuk B 2016 Science 354 aag2472Google Scholar

    [19]

    Jahani S, Jacob Z 2016 Nat. Nanotechnol. 11 23Google Scholar

    [20]

    Behaghel B, Tamaki R, Vandamme N, Watanabe K, Dupuis C, Bardou N, Sodabanlu H, Cattoni A, Okada Y, Sugiyama M, Collin S, Guillemoles J 2015 Appl. Phys. Lett. 106 081107Google Scholar

    [21]

    Peng X C, Wang Z D, Liu Y, Manos D M, Poelker M, Stutzman M, Tang B, Zhang S K, Zou J J 2019 Phys. Rev. Appl. 12 064002Google Scholar

    [22]

    彭新村, 王智栋, 曾梦丝, 刘云, 邹继军, 朱志甫, 邓文娟 2019 无机材料学报 34 734Google Scholar

    Peng X C, Wang Z D, Zeng M S, Liu Y, Zou J J, Zhu Z F, Deng W J 2019 J. Inorg. Mater. 34 734Google Scholar

    [23]

    Wang C A, Shiau D A, Murphy P G, O'Brien P W, Huang R K, Connors M K, Anderson A C, Donetsky D, Anikeev S, Belenky G, Depoy D M, Nichols G 2004 J. Electron. Mater. 33 213Google Scholar

    [24]

    彭新村 王智栋 邓文娟 朱志甫 邹继军 张益军 2020 69 068501Google Scholar

    Peng X C, Wang Z D, Deng W J, Zhu Z F, Zou J J, Zhang Y J 2020 Acta Phys. Sin. 69 068501Google Scholar

    [25]

    Tian Y, Chua S J, Jin Y X 2003 Microelectron. J. 34 304

    [26]

    Peng X C, Poelker M, Stutzman M, Tang B, Zhang S K, Zou J J 2020 Opt. Express 28 860Google Scholar

    [27]

    Wang Y, Chen N F, Zhang X W, Huang T M, Yin Z G, Wang Y S, Zhang H 2010 Sol. Energ. Mat. Sol. C. 94 1704Google Scholar

    [28]

    Tang L L, Fraas L M, Liu Z M, Xu C, Chen X Y 2016 IEEE T. Electron Dev. 63 3591Google Scholar

    [29]

    Dashiell M W, Beausang J F, Ehsani H, Nichols G J, Depoy D M, Danielson L R, Talamo P, Rahner K D, Brown E J, Burger S R, Fourspring P M, Topper W F, Jr., Baldasaro P F, Wang C A, Huang R K, Connors M K, Turner G W, Shellenbarger Z A, Taylor G, Li J Z, Martinelli R, Donetski D, Anikeev S, Belenky G L, Luryi S 2006 IEEE T. Electron Dev. 53 2879Google Scholar

    [30]

    Groep J, Polman A 2013 Opt. Express 21 26285Google Scholar

    [31]

    Wang Z Y, Zhang R J, Wang S Y, Lu M, Chen X, Zheng Y X, Chen L Y, Ye Z, Wang C Z, Ho K M 2015 SCI REP-UK 5 7810Google Scholar

    [32]

    Wang C A 2004 AIP Conf. Proc. 738 255Google Scholar

  • [1] 王子尧, 陈福家, 郗翔, 高振, 杨怡豪. 非互易拓扑光子学.  , 2024, 73(6): 064201. doi: 10.7498/aps.73.20231850
    [2] 赵雨辰, 郑家欢, 王勇, 席晓莉, 宋海智. 纳米多孔氮化铌薄膜红外宽带光响应特性.  , 2022, 71(5): 058501. doi: 10.7498/aps.71.20211694
    [3] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究.  , 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [4] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控.  , 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [5] 张祎男, 王丽华, 柳华杰, 樊春海. 基于DNA自组装的金属纳米结构制备及相关纳米光子学研究.  , 2017, 66(14): 147101. doi: 10.7498/aps.66.147101
    [6] 郭德成, 蒋晓东, 黄进, 向霞, 王凤蕊, 刘红婕, 周信达, 祖小涛. 紫外脉冲激光退火发次对KDP晶体抗损伤性能的影响.  , 2013, 62(14): 147803. doi: 10.7498/aps.62.147803
    [7] 刘军, 周伟昌, 张建福. CdS:Cu一维纳米结构及其光子学特性研究.  , 2012, 61(20): 206101. doi: 10.7498/aps.61.206101
    [8] 苏斌, 龚伯仪, 赵晓鹏. 树叶状红外频段完美吸收器的仿真设计.  , 2012, 61(14): 144203. doi: 10.7498/aps.61.144203
    [9] 刘硕, 李曙光, 付博, 周洪松, 冯荣普. 中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究.  , 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [10] 王红霞, 周战荣, 张清华, 马进, 刘代志. 纳米碳纤维红外消光数值计算.  , 2010, 59(9): 6111-6117. doi: 10.7498/aps.59.6111
    [11] 陈晓波, 廖红波, 张春林, 于春雷, 潘伟, 胡丽丽, 吴正龙. 掺铒的纳米相氟氧化物玻璃陶瓷的多光子红外量子剪裁.  , 2010, 59(7): 5091-5099. doi: 10.7498/aps.59.5091
    [12] 周利刚, 沈文忠. GaN/AlGaN双带红外探测及光子频率上转换研究.  , 2009, 58(10): 6863-6872. doi: 10.7498/aps.58.6863
    [13] 梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊. 掺氮金刚石的光学吸收与氮杂质含量的分析研究.  , 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [14] 黄多辉, 王藩侯, 闵军, 朱正和. 外电场作用下MgO分子的特性研究.  , 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
    [15] 王 科, 郑婉华, 任 刚, 杜晓宇, 邢名欣, 陈良惠. 双色量子阱红外探测器顶部光子晶体耦合层的设计优化.  , 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [16] 陈为兰, 顾培夫, 王 颖, 章岳光, 刘 旭. 红外薄膜中热应力的研究.  , 2008, 57(7): 4316-4321. doi: 10.7498/aps.57.4316
    [17] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器.  , 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [18] 周 梅, 陈效双, 徐 靖, 曾 勇, 吴砚瑞, 陆 卫, 王连卫, 陈 瑜. 中红外波段硅基两维光子晶体的光子带隙.  , 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [19] 汪正民, 杨立书, 刘宗才, 吴传秀. CF3CDCl2分子红外多光子光热吸收谱.  , 1988, 37(4): 670-673. doi: 10.7498/aps.37.670
    [20] 甘子钊, 杨国桢, 冯克安, 黄锡毅. 强红外场作用下分子的多光子离解理论.  , 1978, 27(4): 480-482. doi: 10.7498/aps.27.480
计量
  • 文章访问数:  4357
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-03
  • 修回日期:  2021-01-04
  • 上网日期:  2021-05-22
  • 刊出日期:  2021-06-05

/

返回文章
返回
Baidu
map