搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子芯片的基本原理、关键技术及研究进展

李沫 陈飞良 罗小嘉 杨丽君 张健

引用本文:
Citation:

原子芯片的基本原理、关键技术及研究进展

李沫, 陈飞良, 罗小嘉, 杨丽君, 张健

Fundamental principles, key enabling technologies, and research progress of atom chips

Li Mo, Chen Fei-Liang, Luo Xiao-Jia, Yang Li-Jun, Zhang Jian
PDF
HTML
导出引用
  • 飞速发展的激光冷却、囚禁与操控中性原子的理论和实验技术不仅促进了人们对微观物质运动规律的认知, 而且在精密测量和量子信息领域催生了多项颠覆性的器件与应用. 不同于传统复杂庞大的原子光学实验装置, 原子芯片通过在硅等基底上制备的表面微纳结构或器件来精准控制磁场、电场或光场, 从而在小尺度、低功耗条件下实现对原子的强束缚与相干操控, 被认为是一种稳定、精确、功能及扩展性强大的原子及其量子态片上实验平台, 具有广泛且重大的应用价值. 本文首先简要回顾了原子芯片的发展历程, 然后介绍了基于载流导线的微势阱及微导引实现原子芯片的基本原理, 并着重讨论了基于载流导线的原子芯片制备技术、测试方法和集成的全链条关键实现技术. 随后, 本文综述了各国与原子芯片相关的研究计划布局和主要应用进展, 指出原子芯片走向实用面临的挑战性问题, 并对其未来发展进行了展望.
    The laser cooling, trapping and manipulating of neutral atoms has become a valuable tool for scientists, providing innovative ways to probe the nature of reality and giving rise to transformative devices in the fields of precise measurement and quantum information processing. Unlike traditional complex and bulky atomic experimental facilities, atom chips, through the design, fabrication of surface-patterned microstructures, and the integration of devices on the substrates, can precisely control the magnetic, electric or optical fields on a micro-nano scale with low power consumption. It can realize strong trapping as well as coherent atomic manipulation. Since atom chip was first proposed twenty years ago, it has built a robust quantum platform for miniaturizing and integrating quantum optics and atomic physics tools on a chip. In this paper, first, we briefly review the development history of atom chips, then introduce the basic knowledge of micro potential traps and micro guides based on on-chip current-carrying wires. Afterwards, the key technologies about the chip material, design, fabrication, characterization and integration of atom chips are discussed in detail. We not only focus on the currently most active and successful areas - current carrying wires, but also look at more visionary approaches such as to the manipulation of atoms with real nano structures, say, carbon nano tubes. The design and fabrication principles of ideal atom chips are discussed as well. In the forth part, the worldwide plans and research projects involving with atom chip technologies are summarized, showing that many countries see this as an important foundational technology. Following that, the major developments in the application fields including atom clocks, atom interferometer gyroscope, cold atom gravimeter, etc are described. Finally, the challenges faced by atom chips towards practical application are pointed out and the prospects for their subsequent development are depicted.
      通信作者: 李沫, limo@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61875178)、国家自然科学基金委员会-中国工程物理研究院(NSAF)联合基金(批准号: U1730126)和科学挑战专题(批准号: TZ2018003-3)资助的课题
      Corresponding author: Li Mo, limo@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61875178), the National Natural Science Foundation of China and China Academy of Engineering Physics Joint Fund (NSAF) (Grant No. U1730126), and the Science Challenge Project (Grant No. TZ2018003-3)
    [1]

    Schmiedmayer J 1995 Phys. Rev. A 52 R13Google Scholar

    [2]

    Schmiedmayer J 1995 Appl. Phys. B 60 169

    [3]

    Reichel J, Hänsel W, Hänsch T 1999 Phys. Rev. Lett. 83 3398Google Scholar

    [4]

    Hänsel W, Reichel J, Hommelhoff P, Hänsch T 2001 Phys. Rev. A 64 063607Google Scholar

    [5]

    Fortagh J, Zimmermann C 2007 Rev. Mod. Phys. 79 235Google Scholar

    [6]

    Eriksson S, Trupke M, Powell H F 2005 Eur. Phys. J. D 35 135

    [7]

    Trupke M, Goldwin J, Darquié B 2007 Phys. Rev. Lett. 99 063601

    [8]

    Helsby S, Corbari C, Ibsen M, Horak P, Kazansky P 2007 Phys. Rev. A 75 013618

    [9]

    Mukai T, Hufnagel C, Kasper A, Meno T, Tsukada A, Semba K, Shimizu F 2007 Phys. Rev. Lett. 98 260407Google Scholar

    [10]

    Pollock S, Cotter J, Laliotis A, Hinds E 2009 Opt. Express 17 14109

    [11]

    印建平 2012 原子光学: 基本概念、原理、技术及其应用 (上海: 上海交通大学出版社)

    Yin J P 2012 Atomic Optics: Basic Concepts, Principles, Techniques and Their Applications (Shanghai: Shanghai Jiao Tong University Press) (in Chinese)

    [12]

    Ketterle W, Durfee D, Stamper-Kurn D 1999 Proceedings of the International School of Physics, Varenna, Italy, April, 1999

    [13]

    Pritchard D E 1983 Phys. Rev. Lett. 51 1336Google Scholar

    [14]

    Cornell E A, Monroe C, Wieman C E 1991 Phys. Rev. Lett. 67 2439Google Scholar

    [15]

    Ketterle W, Pritchard D E 1992 Phys. Rev. A 46 4051Google Scholar

    [16]

    Petrich W, Anderson M H, Ensher J R 1995 Phys. Rev. Lett. 74 3352Google Scholar

    [17]

    柯敏, 李晓林, 王育竹 2005 物理学进展 25 48Google Scholar

    Ke M, Li X L, Wang Y Z 2005 Progress Phys. 25 48Google Scholar

    [18]

    Cassettari D, Chenet A, Folman R 2000 Appl. Phys. B 70 721

    [19]

    Reichel J, Hänsel W, Hommelhoff P 2001 Appl. Phys. B 72 81

    [20]

    Hänsel W 2000 Ph. D. Dissertation (Germany: Ludwig-Maximilians-Universität München)

    [21]

    Weinstein J D, Libbrecht K G 1995 Phys. Rev. A 52 4004Google Scholar

    [22]

    Folman R, Krüger P, Schmiedmayer J, Denschlag J, Henkel C 2002 Adv. Atom. Mol. Opt. Phy. 48 26

    [23]

    Hänsel W, Reichel J, Hommelhoff P, Hänsch T W 2001 Phys. Rev. Lett. 86 608Google Scholar

    [24]

    Long R, Rom T, Hänsel W, Hänsch T W, Reichel J 2005 Eur. Phys. J. D 35 125Google Scholar

    [25]

    Roy R, Condylis P C, Prakash V 2017 Sci. Rep. 7 1

    [26]

    Hu J, Yin J 2002 J. Opt. Soc. Am. B 19 2844Google Scholar

    [27]

    胡建军, 印建平 2005 光学学报 25 412Google Scholar

    Hu J J, Yin J P 2005 Acta Optic. Sin. 25 412Google Scholar

    [28]

    周锋 2018 博士学位论文 (武汉: 华中科技大学)

    Zhou F 2018 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology)(in Chinese)

    [29]

    Pollock S, Cotter J P, Laliotis A 2011 New. J. Phys. 13 215

    [30]

    Nshii C C, Vangeleyn M, Cotter J P, Griffin P F, Hinds E A, Ironside C. N, See P, Sinclair A G, Riis E, Arnold A. S 2013 Nat. Nanaotechnol. 8 321

    [31]

    Mcgilligan J P, Griffin P F, Riis E, Arnold A S 2016 J. Opt. Soc. Am. B 33 6

    [32]

    周晟, 李沫, 赵杰, 姜伟 2017 量子信息技术与应用研讨会中国 北京 2017年6月15—16日

    Zhou S, Li M, Zhao J, Jiang W 2017 Workshop on Quantum Information Technology and Applications, Beijing, China, June 15–16, 2017 (in Chinese)

    [33]

    McGilligan J P, Griffin P F, Elvin R, Ingleby S J, Riis E, Arnold A S 2017 Sci. Rep. 7 384Google Scholar

    [34]

    Lingxiao Z, Xuan L, Basudeb S 2020 Sci. Adv. 6 1

    [35]

    Muller D, Anderson D Z, Grow R J, Schwindt P D, Cornell E A 1999 Phys. Rev. Lett. 83 5104

    [36]

    Thywissena J H, Olshanii M, Zabow G, DrndiC M, Johnsonb K S, Westervelt R M, Prentiss M 1999 Eur. Phys. J. D 7 361

    [37]

    Dekker N H, Lee C S, Lorent V, Thywissen J H, Smith S P, Drndic M, Westervelt R M, Prentiss M 2000 Phys. Rev. Lett. 84 1124Google Scholar

    [38]

    Baker P M, Stickney J A, Squires M B, Scoville J A, Carlson E J, Buchwald W R, Miller S M 2009 Phys. Rev. A 80 063615Google Scholar

    [39]

    Lesanovsky I, Schumm T, Hofferberth S, Andersson L M, Krüger P, Schmiedmayer J 2006 Phys. Rev. A 73 033619Google Scholar

    [40]

    凌云龙, 汪川, 张海潮 2020 69 100301Google Scholar

    Ling Y L, Wang C, Zhang H C 2020 Acta Phys. Sin. 69 100301Google Scholar

    [41]

    Horne S A, Sackett C A, 2017 Rev. Sci. Instrum. 88 013102Google Scholar

    [42]

    Esteve J, Schumm T, Trebbia J B, Bouchoule I, Aspect A, Westbrook C I 2005 Eur. Phys. J. D 35 141

    [43]

    Hommelhoff P, Hänsel W, Steinmetz T, Hänsch T W, Reichel J 2005 New J. Phys. 7 1Google Scholar

    [44]

    Shin Y, Sanner C, Jo G B, Pasquini T A, Saba M, Ketterle W, Pritchard D E 2005 Phys. Rev. A 72 021604Google Scholar

    [45]

    Treutlein P, Hänsch T W, Reichel J, Negretti A, Cirone M A, Calarco T 2006 Phys. Rev. A 74 022312Google Scholar

    [46]

    Böhi P, Riedel M F, Hoffrogge J, Reichel J, Hansch T W, Treutlein P 2009 Nat. Phys. 5 592Google Scholar

    [47]

    Cassettari D, Hessmo B, Folman R, Maier T, Schmiedmayer J 2000 Phys. Rev. Lett. 85 5483Google Scholar

    [48]

    Müller D, Cornell E A, Prevedelli M, Schwindt P D D, Zozulya A, Anderson D Z 2000 Opt. Lett. 25 1382Google Scholar

    [49]

    Colombe Y, Knyazchyan E, Morizot O, Mercier B, Lorent V, Perrin H 2004 Euro. Phys. Lett. 67 593Google Scholar

    [50]

    Levy S, Lahoud E, Shomroni I, Steinhauer J 2007 Nature 449 579Google Scholar

    [51]

    Zobay O, Garraway B M 2001 Phys. Rev. Lett. 86 1195Google Scholar

    [52]

    Kim S J, Yu H, Gang S T, Kim J B 2017 Appl. Phys. B 123 154

    [53]

    Johnson K S, Chu A P, Berggren K K, Prentiss M 1996 Opt. Commun. 126 326Google Scholar

    [54]

    Wang Y J, Anderson D Z, Bright V M, Cornell E A, Diot Q, Kishimoto T, Prentiss M, Saravanan R. A, Segal S R, Wu S 2005 Phys. Rev. Lett. 94 090405

    [55]

    Leung V Y F, Pijn D R M, Schlatter H, Torralbo-Campo L, La Rooij A L, Mulder G B, Naber J, Soudijn M L, Tauschinsky A, Abarbanel C, Hadad B, Golan E, Folman R, Spreeuw R J C 2014 Rev. Sci. Instrum. 85 053102Google Scholar

    [56]

    West A D, Weatherill K J, Hayward T J, Fry P W, Schrefl T G, Mike R J, Adams C S, Allwood D A, Hughes I G 2012 Nano. Lett. 12 4065

    [57]

    Folman R, Treutlein P, Schmiedmayer J 2011 Atom Chip Fabrication. In Atom Chips (Weinheim: Reichel J, Vuletić V) p61

    [58]

    Lloyd J R, Clement J J, 1996 Thin Solid Films 262 135

    [59]

    Wei B Q, Vajtai R, Ajayan P M 2001 Appl. Phys. Lett. 79 1172Google Scholar

    [60]

    Peano V, Thorwart M, Kasper A, Egger R 2005 Appl. Phys. B 81 1075

    [61]

    Petrov P G, Machluf S, Younis S, Macaluso R, David T, Hadad B, Japha Y, Keil M, Joselevich E, Folman R 2009 Phys. Rev. A. 79 043403Google Scholar

    [62]

    Subramaniam C, Yamada T, Kobashi K, Sekiguchi A, Futaba D N, Yumura, M, Hata K 2013 Nat. Commun. 4 2202Google Scholar

    [63]

    罗小嘉, 李儒, 李沫, 姜伟, 周晟, 王旺平, 陈飞良 2020 中国专利 CN109637975 A [2020-09-18]

    Luo X J, Li R, Li M, Jiang W, Zhou S, Wang W P, Chen F L 2020 Chinese Patent CN109637975 A [2020-09-18] (in Chinese)

    [64]

    Hohenester U, Eiguren A, Scheel S, Hinds E 2007 Phys. Rev. A. 76 33618Google Scholar

    [65]

    Bernon S, Hattermann H, Bothner D, Martin K, Patrizia W, Florian J, Daniel C, Matthias K, Reinhold K, Dieter K, József F 2013 Nat. Commun. 4 1

    [66]

    Günther A, Kemmler M, Kraft S, Vale S J, Zimmermann C, Fortagh J 2005 Phys. Rev. A. 71 063619Google Scholar

    [67]

    Chuang H, Lin Y, Lin Y, Huang C 2014 J. Micromech. Microeng. 24 045013Google Scholar

    [68]

    王旺平, 李沫, 陈飞良, 周晟, 姜伟, 赵杰, 张健 2019 中国专利 CN106847715 [2019-08-20]

    Wang W P, Li M, Chen F L, Zhou S, Jiang W, Zhao J, Zhang J 2019 Chinese Patent CN 106847715 [2019-08-20] (in Chinese)

    [69]

    Jenks W G, Sadeghi S S H, Wikswo J P 1997 J. Phys. D: Appl. Phys. 30 293Google Scholar

    [70]

    Berggren S, Palacios A 2014 Eur. Phys. J. B 87 1Google Scholar

    [71]

    Volk M, Whitlock S, Wolff C H, Hall B V, Sidorov A I 2008 Rev. of Sci. Instr. 79 023702Google Scholar

    [72]

    Wildermuth S, Hofferberth S, Lesanovsky I, Haller E, Andersson L M, Groth S, Bar-Joseph I, Krüger P, Schmiedmayer J 2005 Nature 435 440Google Scholar

    [73]

    柯敏, 2009 博士学位论文(上海: 中国科学院上海光机所)

    Ke M 2009 Ph. D. Dissertation (Shanghai: Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences) (in Chinese)

    [74]

    Folman R, Krüger P, Cassettari D, Hessmo B, Maier T, Schmiedmaye J 2000 Phys. Rev. Lett. 84 4749Google Scholar

    [75]

    Kohnen M, Succo M, Petrov P G, Nyman R A, Trupke M, Hinds E A 2010 Nature Photon. 5 35

    [76]

    Kitching J, 2018 Appl. Phys. Rev. 5 031302Google Scholar

    [77]

    Keil M, Amit O, Zhou S, Groswasser D, Japha Y, Folman R 2016 J. Mod. Optic. 63 1840Google Scholar

    [78]

    Shkel A 2013 Gps World 24 8

    [79]

    程俊, 张敬芳, 许忻平, 蒋小军, 李晓林, 张海潮, 王育竹 2016 65 060302Google Scholar

    Cheng J, Zhang J F, Xu X P, Jiang X J, Li X L, Zhang H C, Wang Y Z 2016 Acta Phys. Sin. 65 060302Google Scholar

    [80]

    颜辉, 2009 博士学位论文 (武汉: 中国科学院武汉物理与数学研究所)

    Yan H 2009 Ph. D. Dissertation (Wuhan: Institute of Physics and Mathematics, Chinese Academy of Sciences) (in Chinese)

    [81]

    Schumm T, Hofferberth S, Andersson L M, Wildermuth S, Groth S, Bar-Joseph I, Schmiedmayer J, Krüger P 2005 Nat. Phys. 1 57Google Scholar

    [82]

    Jo G B, Shin Y, Will S, Pasquini T A, Saba M, Ketterle W, Pritchard D E, Vengalattore M, Prentiss M 2006 Phys. Rev. Lett. 98 030407

    [83]

    Wu S, Su E, Prentiss M 2007 Phys. Rev. Lett. 99 173201Google Scholar

    [84]

    Burke J H T, Sackett C A 2009 Phys. Rev. A 80 061603Google Scholar

    [85]

    Yan H 2012 Appl. Phys. Lett. 101 194102

    [86]

    Muntinga H, Ahlers H, Krutzik M, Wenzlawski A, Arnold S, Becker D, Bongs K, Dittus H, Duncker H, Gaaloul N, Gherasim C, Giese E, Grzeschik C, Hänsch T W, Hellmig O, Herr W, Herrmann S, Kajari E, Kleinert S, Lämmerzahl C, Lewoczko-Adamczyk W, Malcolm J, Meyer N, Nolte R, Peters A, Popp M, Reichel J, Roura A, Rudolph J, Schiemangk M, Schneider M, Seidel S T, Sengstock K, Tamma V 2013 Phys. Rev. Lett. 110 093602Google Scholar

    [87]

    Rudolph J, Herr W, Grzeschik C, Sternke T, Grote A, Popp M, Becker D, Müntinga H, Ahlers H, Peters A, Lammerzahl C, Sengstock K, Gaaloul N, Ertmer W, Rasel E M 2015 New. J. Phys. 17 065001Google Scholar

    [88]

    Wu X, Zi F, Dudley J, Bilotta R J, Canoza P, Müller H 2017 Optica 4 1545Google Scholar

    [89]

    Moan E R, Horne R A, Arpornthip T, Luo Z, Fallon A J, Berl S J, Sackett C A 2020 Phys. Rev. Lett. 124 120403Google Scholar

    [90]

    Bongs K, Holynski M, Vovrosh J, Bouyer P, Condon G, Rasel E, Schubert C, Schleich W P, Roura A 2019 Nat. Rev. Phys. 1 731Google Scholar

    [91]

    Abend S, Gebbe M, Gersemann M, Ahlers H, Müntinga H, Giese E, Gaaloul N, Schubert C, Lammerzahl C, Ertmer W, Schleich W P, Rasel E M 2016 Phys. Rev. Lett. 117 203003

    [92]

    Wu X, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Müller H 2019 Sci. Adv. 5 aax0800Google Scholar

    [93]

    Schmiedmayer J, Folman R, Calarco T 2002 J. Mod. Optic. 49 1375Google Scholar

    [94]

    Trupke M, Metz J, Beige A, Hinds E A 2007 J. Mod. Optic. 54 1639Google Scholar

    [95]

    Houck A A, Türeci, Hakan E, Koch J 2012 Nat. Phys. 8 292Google Scholar

    [96]

    La Rooij A L, Den Heuvell H B, Spreeuw R J, Spreeuw R J C 2019 Phys. Rev. A 99 2

    [97]

    Bautista-Salvador A, Zarantonello G, Hahn H, Preciado-Grijalva A, Morgner J, Wahnschaffe M, Ospelkaus C 2019 New. J. Phys. 21 043011Google Scholar

    [98]

    Ockeloen C F, Schmied R, Riedel M F, Treutlein P 2013 Phys. Rev. Lett. 111 143001Google Scholar

    [99]

    Carter J D, Cherry O, Martin J D 2013 Phys. Rev. A 86 053401

    [100]

    Riedel M, Böhi P, Li Y, Hänsch T W, Sinatra A, Treutlein P 2010 Nature 464 1170Google Scholar

    [101]

    Aveline D C, Williams J R, Elliott E R, Dutenhoffer C, Thompson R J 2020 Nature 582 193Google Scholar

    [102]

    Tajik M, Rauer B, Schweigler T, Cataldini F, Schmiedmayer J 2019 OPT Express 27 33474Google Scholar

    [103]

    ()https://scienceandtechnology.jpl.nasa.gov/good-bad-and-quantum-nasa-jpl%E2%80%99 s-cold-atom-laboratory [EB/OL]. 2019-02-06

    [104]

    Thompson R, Sengupta A, Aveline D, Kohel J [EB/OL] http://paragon.myvnc.com/TheParagon-Space/TheParagon-Space/New_Space/ScienceTheories/Cold%20 Particles-Theories.pdf

  • 图 1  (a)由U形阱形成的四极磁阱; (b)由Z形阱形成的IP阱[3]

    Fig. 1.  (a) Quadrupole trap by U configuration; (b) Ioffe-Pritchard trap by Z configuration[3].

    图 2  (a) Dimple阱; (b) H形阱[20]

    Fig. 2.  (a) Dimple trap; (b) H-type trap[20].

    图 3  四种平面Ioffe阱的方案[22]

    Fig. 3.  Four planar Ioffe trap configurations[22].

    图 4  多种原子传送带结构[23-25]

    Fig. 4.  Multiple configurations of atom conveyor belts[23-25].

    图 5  基于(a)金字塔结构[29], (b)光栅结构[33]的芯片微MOT

    Fig. 5.  Micro-MOTs chip based on (a) micro-paramide arrays[29] and (b) gratings[33].

    图 6  (a) 侧边导引; (b) 共面成对同向载流的侧边导引; (c) 共面成对异向载流的侧边导引; (d)三线导引. 图中S为导线间距

    Fig. 6.  (a) Side guide; (b) two-wire side with co-propagating currents; (c) two-wire side guide with opposing current directions; (d) three-wire guide. S is the distance between wires.

    图 7  弗吉尼亚大学设计的MOT[41]

    Fig. 7.  Magnetic trap assembly proposed by University of Virginia[41].

    图 8  原子芯片上的Y形分束和X形分束[22]

    Fig. 8.  Beam splitter for guided atoms using Y-shaped and X-shaped current carrying wires[22].

    图 9  原子芯片上基于射频场的双势阱物质波分束[52]

    Fig. 9.  Matter-wave beam splitter by dressing RF-fields on chip[52].

    图 10  (a) 双层CNT原子芯片示意图; (b) 原子力显微镜(AFM)下CNT及其与Z形导线的接触[61]

    Fig. 10.  (a) Schematic representation of the two layer CNT atom chip; (b) atomic force microscope image of a CNT fabricated and contacted for use as a Z-shaped wire trap[61].

    图 11  原子芯片上载流导线的制备方法 (a) 剥离法; (b) 刻蚀法

    Fig. 11.  Fabrication methods of the on-chip current-carrying wires: (a) Stripping method; (b) etching method.

    图 12  基于不同封装工艺的原子芯片 (a) 针对传统真空法兰电极接口的芯片封装形式; (b) 超高真空胶; (c) 阳极键合[67]; (d) 软钎焊

    Fig. 12.  Atom chips based on different packaging processes: (a)Traditional vacuum package; (b) ultra-high vacuum adhesive; (c) anode adhesive[67]; (d) soft soldering.

    图 13  基于冷原子干涉的原子芯片陀螺仪基本流程

    Fig. 13.  Basic process of gyroscope based on cold atom interference on chip.

    图 14  Honeywell提出的水平方向集成的芯片级原子钟方案 (a) 原子物理集成部分; (b) 蒸汽室与光路的集成[76]

    Fig. 14.  Horizontally integrated design for a chip-scale atomic clock physics package: (a) Schematic of physics package and (b) photograph of vapor cell integrated into optical path[76].

    图 15  高度集成化的原子芯片量子陀螺仪构想[77]

    Fig. 15.  Futuristic visions of highly integrated atom chips for quantum gyroscope[77].

    图 16  C-SCAN的概念图[78]

    Fig. 16.  Schematic scheme of C-SCAN[78].

    图 17  美国DARPA的A-PHI计划框架

    Fig. 17.  Framework of A-PHI of DARPA.

    图 18  哈佛大学提出的直线形宏观磁导引等效“8”字形的闭合回路冷原子干涉陀螺仪[83]

    Fig. 18.  Schematic of a moving-guide with a ‘folded figure 8’ configuration for creating an atom gyroscope with multiple-turn interfering paths by Harvard University[83].

    图 19  美国弗吉尼亚大学基于芯片上闭合环形原子波导实现BEC干涉与转动测量[89]

    Fig. 19.  The rotational information experimental results of BEC atomic interferometry based on Sagnac effects by University of Virginia[89].

    图 20  基于原子芯片的喷泉式重力仪[91]

    Fig. 20.  Atom-chip fountain gravimeter[91].

    图 21  用于量子模拟的FePt永磁体纳米磁晶格原子芯片[96]

    Fig. 21.  The magnetic potential in arbitrary units above an magnetized patterned layer of FePt[96].

    图 22  联邦物理技术研究院和汉诺威大学合作报道的离子阱芯片[97]

    Fig. 22.  Multilayer ion trap chip by Germany[97].

    图 23  JPL和NASA发射到空间站的原子芯片[103,104]

    Fig. 23.  Atom chip launch to the space station by JPL and NASA[103,104].

    表 1  基于原子芯片的部分应用

    Table 1.  Applications based on atom chips.

    应用类型应用领域
    基础物理研究国家安全国民经济
    原子陀螺仪航空、航天、航海、
    潜艇、导弹导航
    自动驾驶, 手机定位导航
    原子加速度计广义相对论等效原理验证、行星科学航空、航天、航海、
    潜艇、导弹导航
    自动驾驶, 手机导航
    原子干涉重力仪万有引力常数测试导航煤、石油、天然气等资源勘探、
    地下遗迹探测、手机手势识别
    量子计算和量子模拟基础量子物理问题研究密码破译, 信息安全高性能计算
    芯片级原子钟广义相对论等效原理验证、引力波探测、
    暗物质探测、精细结构常数变化测试
    授时, 航空航天地貌测绘等
    芯片级原子磁力计潜艇探测矿石探测、人体健康检测
    下载: 导出CSV
    Baidu
  • [1]

    Schmiedmayer J 1995 Phys. Rev. A 52 R13Google Scholar

    [2]

    Schmiedmayer J 1995 Appl. Phys. B 60 169

    [3]

    Reichel J, Hänsel W, Hänsch T 1999 Phys. Rev. Lett. 83 3398Google Scholar

    [4]

    Hänsel W, Reichel J, Hommelhoff P, Hänsch T 2001 Phys. Rev. A 64 063607Google Scholar

    [5]

    Fortagh J, Zimmermann C 2007 Rev. Mod. Phys. 79 235Google Scholar

    [6]

    Eriksson S, Trupke M, Powell H F 2005 Eur. Phys. J. D 35 135

    [7]

    Trupke M, Goldwin J, Darquié B 2007 Phys. Rev. Lett. 99 063601

    [8]

    Helsby S, Corbari C, Ibsen M, Horak P, Kazansky P 2007 Phys. Rev. A 75 013618

    [9]

    Mukai T, Hufnagel C, Kasper A, Meno T, Tsukada A, Semba K, Shimizu F 2007 Phys. Rev. Lett. 98 260407Google Scholar

    [10]

    Pollock S, Cotter J, Laliotis A, Hinds E 2009 Opt. Express 17 14109

    [11]

    印建平 2012 原子光学: 基本概念、原理、技术及其应用 (上海: 上海交通大学出版社)

    Yin J P 2012 Atomic Optics: Basic Concepts, Principles, Techniques and Their Applications (Shanghai: Shanghai Jiao Tong University Press) (in Chinese)

    [12]

    Ketterle W, Durfee D, Stamper-Kurn D 1999 Proceedings of the International School of Physics, Varenna, Italy, April, 1999

    [13]

    Pritchard D E 1983 Phys. Rev. Lett. 51 1336Google Scholar

    [14]

    Cornell E A, Monroe C, Wieman C E 1991 Phys. Rev. Lett. 67 2439Google Scholar

    [15]

    Ketterle W, Pritchard D E 1992 Phys. Rev. A 46 4051Google Scholar

    [16]

    Petrich W, Anderson M H, Ensher J R 1995 Phys. Rev. Lett. 74 3352Google Scholar

    [17]

    柯敏, 李晓林, 王育竹 2005 物理学进展 25 48Google Scholar

    Ke M, Li X L, Wang Y Z 2005 Progress Phys. 25 48Google Scholar

    [18]

    Cassettari D, Chenet A, Folman R 2000 Appl. Phys. B 70 721

    [19]

    Reichel J, Hänsel W, Hommelhoff P 2001 Appl. Phys. B 72 81

    [20]

    Hänsel W 2000 Ph. D. Dissertation (Germany: Ludwig-Maximilians-Universität München)

    [21]

    Weinstein J D, Libbrecht K G 1995 Phys. Rev. A 52 4004Google Scholar

    [22]

    Folman R, Krüger P, Schmiedmayer J, Denschlag J, Henkel C 2002 Adv. Atom. Mol. Opt. Phy. 48 26

    [23]

    Hänsel W, Reichel J, Hommelhoff P, Hänsch T W 2001 Phys. Rev. Lett. 86 608Google Scholar

    [24]

    Long R, Rom T, Hänsel W, Hänsch T W, Reichel J 2005 Eur. Phys. J. D 35 125Google Scholar

    [25]

    Roy R, Condylis P C, Prakash V 2017 Sci. Rep. 7 1

    [26]

    Hu J, Yin J 2002 J. Opt. Soc. Am. B 19 2844Google Scholar

    [27]

    胡建军, 印建平 2005 光学学报 25 412Google Scholar

    Hu J J, Yin J P 2005 Acta Optic. Sin. 25 412Google Scholar

    [28]

    周锋 2018 博士学位论文 (武汉: 华中科技大学)

    Zhou F 2018 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology)(in Chinese)

    [29]

    Pollock S, Cotter J P, Laliotis A 2011 New. J. Phys. 13 215

    [30]

    Nshii C C, Vangeleyn M, Cotter J P, Griffin P F, Hinds E A, Ironside C. N, See P, Sinclair A G, Riis E, Arnold A. S 2013 Nat. Nanaotechnol. 8 321

    [31]

    Mcgilligan J P, Griffin P F, Riis E, Arnold A S 2016 J. Opt. Soc. Am. B 33 6

    [32]

    周晟, 李沫, 赵杰, 姜伟 2017 量子信息技术与应用研讨会中国 北京 2017年6月15—16日

    Zhou S, Li M, Zhao J, Jiang W 2017 Workshop on Quantum Information Technology and Applications, Beijing, China, June 15–16, 2017 (in Chinese)

    [33]

    McGilligan J P, Griffin P F, Elvin R, Ingleby S J, Riis E, Arnold A S 2017 Sci. Rep. 7 384Google Scholar

    [34]

    Lingxiao Z, Xuan L, Basudeb S 2020 Sci. Adv. 6 1

    [35]

    Muller D, Anderson D Z, Grow R J, Schwindt P D, Cornell E A 1999 Phys. Rev. Lett. 83 5104

    [36]

    Thywissena J H, Olshanii M, Zabow G, DrndiC M, Johnsonb K S, Westervelt R M, Prentiss M 1999 Eur. Phys. J. D 7 361

    [37]

    Dekker N H, Lee C S, Lorent V, Thywissen J H, Smith S P, Drndic M, Westervelt R M, Prentiss M 2000 Phys. Rev. Lett. 84 1124Google Scholar

    [38]

    Baker P M, Stickney J A, Squires M B, Scoville J A, Carlson E J, Buchwald W R, Miller S M 2009 Phys. Rev. A 80 063615Google Scholar

    [39]

    Lesanovsky I, Schumm T, Hofferberth S, Andersson L M, Krüger P, Schmiedmayer J 2006 Phys. Rev. A 73 033619Google Scholar

    [40]

    凌云龙, 汪川, 张海潮 2020 69 100301Google Scholar

    Ling Y L, Wang C, Zhang H C 2020 Acta Phys. Sin. 69 100301Google Scholar

    [41]

    Horne S A, Sackett C A, 2017 Rev. Sci. Instrum. 88 013102Google Scholar

    [42]

    Esteve J, Schumm T, Trebbia J B, Bouchoule I, Aspect A, Westbrook C I 2005 Eur. Phys. J. D 35 141

    [43]

    Hommelhoff P, Hänsel W, Steinmetz T, Hänsch T W, Reichel J 2005 New J. Phys. 7 1Google Scholar

    [44]

    Shin Y, Sanner C, Jo G B, Pasquini T A, Saba M, Ketterle W, Pritchard D E 2005 Phys. Rev. A 72 021604Google Scholar

    [45]

    Treutlein P, Hänsch T W, Reichel J, Negretti A, Cirone M A, Calarco T 2006 Phys. Rev. A 74 022312Google Scholar

    [46]

    Böhi P, Riedel M F, Hoffrogge J, Reichel J, Hansch T W, Treutlein P 2009 Nat. Phys. 5 592Google Scholar

    [47]

    Cassettari D, Hessmo B, Folman R, Maier T, Schmiedmayer J 2000 Phys. Rev. Lett. 85 5483Google Scholar

    [48]

    Müller D, Cornell E A, Prevedelli M, Schwindt P D D, Zozulya A, Anderson D Z 2000 Opt. Lett. 25 1382Google Scholar

    [49]

    Colombe Y, Knyazchyan E, Morizot O, Mercier B, Lorent V, Perrin H 2004 Euro. Phys. Lett. 67 593Google Scholar

    [50]

    Levy S, Lahoud E, Shomroni I, Steinhauer J 2007 Nature 449 579Google Scholar

    [51]

    Zobay O, Garraway B M 2001 Phys. Rev. Lett. 86 1195Google Scholar

    [52]

    Kim S J, Yu H, Gang S T, Kim J B 2017 Appl. Phys. B 123 154

    [53]

    Johnson K S, Chu A P, Berggren K K, Prentiss M 1996 Opt. Commun. 126 326Google Scholar

    [54]

    Wang Y J, Anderson D Z, Bright V M, Cornell E A, Diot Q, Kishimoto T, Prentiss M, Saravanan R. A, Segal S R, Wu S 2005 Phys. Rev. Lett. 94 090405

    [55]

    Leung V Y F, Pijn D R M, Schlatter H, Torralbo-Campo L, La Rooij A L, Mulder G B, Naber J, Soudijn M L, Tauschinsky A, Abarbanel C, Hadad B, Golan E, Folman R, Spreeuw R J C 2014 Rev. Sci. Instrum. 85 053102Google Scholar

    [56]

    West A D, Weatherill K J, Hayward T J, Fry P W, Schrefl T G, Mike R J, Adams C S, Allwood D A, Hughes I G 2012 Nano. Lett. 12 4065

    [57]

    Folman R, Treutlein P, Schmiedmayer J 2011 Atom Chip Fabrication. In Atom Chips (Weinheim: Reichel J, Vuletić V) p61

    [58]

    Lloyd J R, Clement J J, 1996 Thin Solid Films 262 135

    [59]

    Wei B Q, Vajtai R, Ajayan P M 2001 Appl. Phys. Lett. 79 1172Google Scholar

    [60]

    Peano V, Thorwart M, Kasper A, Egger R 2005 Appl. Phys. B 81 1075

    [61]

    Petrov P G, Machluf S, Younis S, Macaluso R, David T, Hadad B, Japha Y, Keil M, Joselevich E, Folman R 2009 Phys. Rev. A. 79 043403Google Scholar

    [62]

    Subramaniam C, Yamada T, Kobashi K, Sekiguchi A, Futaba D N, Yumura, M, Hata K 2013 Nat. Commun. 4 2202Google Scholar

    [63]

    罗小嘉, 李儒, 李沫, 姜伟, 周晟, 王旺平, 陈飞良 2020 中国专利 CN109637975 A [2020-09-18]

    Luo X J, Li R, Li M, Jiang W, Zhou S, Wang W P, Chen F L 2020 Chinese Patent CN109637975 A [2020-09-18] (in Chinese)

    [64]

    Hohenester U, Eiguren A, Scheel S, Hinds E 2007 Phys. Rev. A. 76 33618Google Scholar

    [65]

    Bernon S, Hattermann H, Bothner D, Martin K, Patrizia W, Florian J, Daniel C, Matthias K, Reinhold K, Dieter K, József F 2013 Nat. Commun. 4 1

    [66]

    Günther A, Kemmler M, Kraft S, Vale S J, Zimmermann C, Fortagh J 2005 Phys. Rev. A. 71 063619Google Scholar

    [67]

    Chuang H, Lin Y, Lin Y, Huang C 2014 J. Micromech. Microeng. 24 045013Google Scholar

    [68]

    王旺平, 李沫, 陈飞良, 周晟, 姜伟, 赵杰, 张健 2019 中国专利 CN106847715 [2019-08-20]

    Wang W P, Li M, Chen F L, Zhou S, Jiang W, Zhao J, Zhang J 2019 Chinese Patent CN 106847715 [2019-08-20] (in Chinese)

    [69]

    Jenks W G, Sadeghi S S H, Wikswo J P 1997 J. Phys. D: Appl. Phys. 30 293Google Scholar

    [70]

    Berggren S, Palacios A 2014 Eur. Phys. J. B 87 1Google Scholar

    [71]

    Volk M, Whitlock S, Wolff C H, Hall B V, Sidorov A I 2008 Rev. of Sci. Instr. 79 023702Google Scholar

    [72]

    Wildermuth S, Hofferberth S, Lesanovsky I, Haller E, Andersson L M, Groth S, Bar-Joseph I, Krüger P, Schmiedmayer J 2005 Nature 435 440Google Scholar

    [73]

    柯敏, 2009 博士学位论文(上海: 中国科学院上海光机所)

    Ke M 2009 Ph. D. Dissertation (Shanghai: Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences) (in Chinese)

    [74]

    Folman R, Krüger P, Cassettari D, Hessmo B, Maier T, Schmiedmaye J 2000 Phys. Rev. Lett. 84 4749Google Scholar

    [75]

    Kohnen M, Succo M, Petrov P G, Nyman R A, Trupke M, Hinds E A 2010 Nature Photon. 5 35

    [76]

    Kitching J, 2018 Appl. Phys. Rev. 5 031302Google Scholar

    [77]

    Keil M, Amit O, Zhou S, Groswasser D, Japha Y, Folman R 2016 J. Mod. Optic. 63 1840Google Scholar

    [78]

    Shkel A 2013 Gps World 24 8

    [79]

    程俊, 张敬芳, 许忻平, 蒋小军, 李晓林, 张海潮, 王育竹 2016 65 060302Google Scholar

    Cheng J, Zhang J F, Xu X P, Jiang X J, Li X L, Zhang H C, Wang Y Z 2016 Acta Phys. Sin. 65 060302Google Scholar

    [80]

    颜辉, 2009 博士学位论文 (武汉: 中国科学院武汉物理与数学研究所)

    Yan H 2009 Ph. D. Dissertation (Wuhan: Institute of Physics and Mathematics, Chinese Academy of Sciences) (in Chinese)

    [81]

    Schumm T, Hofferberth S, Andersson L M, Wildermuth S, Groth S, Bar-Joseph I, Schmiedmayer J, Krüger P 2005 Nat. Phys. 1 57Google Scholar

    [82]

    Jo G B, Shin Y, Will S, Pasquini T A, Saba M, Ketterle W, Pritchard D E, Vengalattore M, Prentiss M 2006 Phys. Rev. Lett. 98 030407

    [83]

    Wu S, Su E, Prentiss M 2007 Phys. Rev. Lett. 99 173201Google Scholar

    [84]

    Burke J H T, Sackett C A 2009 Phys. Rev. A 80 061603Google Scholar

    [85]

    Yan H 2012 Appl. Phys. Lett. 101 194102

    [86]

    Muntinga H, Ahlers H, Krutzik M, Wenzlawski A, Arnold S, Becker D, Bongs K, Dittus H, Duncker H, Gaaloul N, Gherasim C, Giese E, Grzeschik C, Hänsch T W, Hellmig O, Herr W, Herrmann S, Kajari E, Kleinert S, Lämmerzahl C, Lewoczko-Adamczyk W, Malcolm J, Meyer N, Nolte R, Peters A, Popp M, Reichel J, Roura A, Rudolph J, Schiemangk M, Schneider M, Seidel S T, Sengstock K, Tamma V 2013 Phys. Rev. Lett. 110 093602Google Scholar

    [87]

    Rudolph J, Herr W, Grzeschik C, Sternke T, Grote A, Popp M, Becker D, Müntinga H, Ahlers H, Peters A, Lammerzahl C, Sengstock K, Gaaloul N, Ertmer W, Rasel E M 2015 New. J. Phys. 17 065001Google Scholar

    [88]

    Wu X, Zi F, Dudley J, Bilotta R J, Canoza P, Müller H 2017 Optica 4 1545Google Scholar

    [89]

    Moan E R, Horne R A, Arpornthip T, Luo Z, Fallon A J, Berl S J, Sackett C A 2020 Phys. Rev. Lett. 124 120403Google Scholar

    [90]

    Bongs K, Holynski M, Vovrosh J, Bouyer P, Condon G, Rasel E, Schubert C, Schleich W P, Roura A 2019 Nat. Rev. Phys. 1 731Google Scholar

    [91]

    Abend S, Gebbe M, Gersemann M, Ahlers H, Müntinga H, Giese E, Gaaloul N, Schubert C, Lammerzahl C, Ertmer W, Schleich W P, Rasel E M 2016 Phys. Rev. Lett. 117 203003

    [92]

    Wu X, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Müller H 2019 Sci. Adv. 5 aax0800Google Scholar

    [93]

    Schmiedmayer J, Folman R, Calarco T 2002 J. Mod. Optic. 49 1375Google Scholar

    [94]

    Trupke M, Metz J, Beige A, Hinds E A 2007 J. Mod. Optic. 54 1639Google Scholar

    [95]

    Houck A A, Türeci, Hakan E, Koch J 2012 Nat. Phys. 8 292Google Scholar

    [96]

    La Rooij A L, Den Heuvell H B, Spreeuw R J, Spreeuw R J C 2019 Phys. Rev. A 99 2

    [97]

    Bautista-Salvador A, Zarantonello G, Hahn H, Preciado-Grijalva A, Morgner J, Wahnschaffe M, Ospelkaus C 2019 New. J. Phys. 21 043011Google Scholar

    [98]

    Ockeloen C F, Schmied R, Riedel M F, Treutlein P 2013 Phys. Rev. Lett. 111 143001Google Scholar

    [99]

    Carter J D, Cherry O, Martin J D 2013 Phys. Rev. A 86 053401

    [100]

    Riedel M, Böhi P, Li Y, Hänsch T W, Sinatra A, Treutlein P 2010 Nature 464 1170Google Scholar

    [101]

    Aveline D C, Williams J R, Elliott E R, Dutenhoffer C, Thompson R J 2020 Nature 582 193Google Scholar

    [102]

    Tajik M, Rauer B, Schweigler T, Cataldini F, Schmiedmayer J 2019 OPT Express 27 33474Google Scholar

    [103]

    ()https://scienceandtechnology.jpl.nasa.gov/good-bad-and-quantum-nasa-jpl%E2%80%99 s-cold-atom-laboratory [EB/OL]. 2019-02-06

    [104]

    Thompson R, Sengupta A, Aveline D, Kohel J [EB/OL] http://paragon.myvnc.com/TheParagon-Space/TheParagon-Space/New_Space/ScienceTheories/Cold%20 Particles-Theories.pdf

  • [1] 成永军, 董猛, 孙雯君, 吴翔民, 张亚飞, 贾文杰, 冯村, 张瑞芳. 基于7Li冷原子操控的超高真空测量.  , 2024, 73(22): 220601. doi: 10.7498/aps.73.20241215
    [2] 翟荟. 基于冷原子的非平衡量子多体物理研究.  , 2023, 72(23): 230701. doi: 10.7498/aps.72.20231375
    [3] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量.  , 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [4] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响.  , 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [5] 何天琛, 李吉. 利用Kapitza-Dirac脉冲操控简谐势阱中冷原子测量重力加速度.  , 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [6] 刘纪彩, 成飞, 赵亚男, 郭芬芬. 飞秒激光场中原子所受光学偶极力研究.  , 2019, 68(3): 033701. doi: 10.7498/aps.68.20182016
    [7] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量.  , 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [8] 陆俊发, 周琦, 潘小青, 印建平. 可操控二种冷原子或冷分子样品的光学双阱新方案及其实验研究.  , 2013, 62(23): 233701. doi: 10.7498/aps.62.233701
    [9] 熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生. 对抛式冷原子陀螺仪中原子运动轨迹的控制.  , 2011, 60(11): 113201. doi: 10.7498/aps.60.113201
    [10] 陆俊发, 周琦, 纪宪明, 印建平. 实现冷原子、冷分子光学囚禁的组合三光学势阱方案.  , 2011, 60(6): 063701. doi: 10.7498/aps.60.063701
    [11] 卢向东, 李同保, 马艳, 汪黎栋. 激光汇聚Cr原子沉积的原子光学特性研究.  , 2009, 58(12): 8205-8211. doi: 10.7498/aps.58.8205
    [12] 石涛, 颜辉, 杨国卿, 王谨, 詹明生. 数字信号在原子芯片中的应用.  , 2009, 58(3): 1586-1589. doi: 10.7498/aps.58.1586
    [13] 纪宪明, 陆俊发, 沐仁旺, 印建平. 一种新颖的全光型表面原子(分子)漏斗.  , 2007, 56(4): 2061-2066. doi: 10.7498/aps.56.2061
    [14] 李晓林, 柯 敏, 颜 波, 唐九耀, 王育竹. 利用原子芯片上Z形磁阱囚禁中性87Rb原子.  , 2007, 56(11): 6367-6372. doi: 10.7498/aps.56.6367
    [15] 江开军, 李 可, 王 谨, 詹明生. Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系.  , 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [16] 陆俊发, 纪宪明, 印建平. 实现冷原子或冷分子囚禁的可控制光学四阱.  , 2006, 55(4): 1740-1750. doi: 10.7498/aps.55.1740
    [17] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间.  , 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [18] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量.  , 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [19] 纪宪明, 印建平. 冷原子或冷分子囚禁的可控制光学双阱.  , 2004, 53(12): 4163-4172. doi: 10.7498/aps.53.4163
    [20] 罗有华, 黄整, 王育竹. 冷原子在静电势阱中的量子力学效应.  , 2002, 51(8): 1706-1710. doi: 10.7498/aps.51.1706
计量
  • 文章访问数:  15626
  • PDF下载量:  735
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-21
  • 修回日期:  2020-11-04
  • 上网日期:  2021-01-15
  • 刊出日期:  2021-01-20

/

返回文章
返回
Baidu
map