-
转录机器是响应细胞信号并启动基因转录的分子机器. 它控制着基因在恰当的时间以适当的速率表达, 演奏着生命之曲的底层旋律. 为了揭示转录机器的工作原理, 研究人员从其结构、动力学、信号转导等不同的维度进行探索. 研究进程在跌宕起伏中螺旋式上升, 各大研究领域趋于成熟却也趋于独立. 故此, 本文着眼全局, 扼要介绍真核生物转录机器在多领域的重要进展, 着重呈现看似大相径庭的新发现. 结构研究揭示了转录机器的基本架构, 核心争议在于媒介子(也称中介体复合物)的信号传递方式—“变构效应”抑或“招募导引”. 超级增强子的可能工作机制包括令人遐想的“液相分离”和“精确协作”. “转录钟”研究揭示了转录动力学的基本特征. 转录爆发现象的发现, 带来了转录调控机制的“调频”与“调幅”之争—前者得到了更多的支持. 此外, 本文也概述了转录研究的技术困难和理论模型, 提供了基于系综统计方法的研究策略, 并介绍了转录机器的理想模型. 转录机器在DNA上的运转方式源自进化的长河, 似乎是对物理学定律的完美运用与平衡.Laws of physics govern all forms of matter movement. However, lives, which are composed of chemical elements which everyone is familiar with, are largely beyond physical description available. This is because the construction of life is not the same as that of general matters, rendering it unknown how physics laws are utilized. In this paper, we present our thinking on the transcriptional apparatus (TA). The TA is a huge molecular machine acting to sense regulatory signals and initiate transcripts at right time and with right rate. The operation of the TA is fundamental to almost all forms of lives. Although great progress has been made in recent years, one often has to face contradictory conclusions from different studies. Additionally, the studies of transcription are divided into several fields, and different fields are increasingly separate and independent. Focusing on eukaryotic transcription, in this review we briefly describe major advances in various fields and present new conflicting view points. Although the structural studies have revealed the main components and architecture of the TA, it is still unclear how the Mediator complex transmits signals from activators to the core transcriptional machinery at the promoter. It is believed that the Mediator functions to recruit RNA polymerase II onto the promoter and promote the entry into transcriptional elongation, which fails to explain how the signal transduction is achieved. On the other hand, the allostery effect of the Mediator allows for signal transmission but is not supported by structural study. It is reported that enhancers, especially supper enhancers, act to recruit activators via forming a so-called liquid drop and phase separation. By contrast, it is suggested that enhancers should cooperate delicately to orchestrate transcription. Results on the kinetics of protein-promoter interaction also contrast with each other, leading to a paradox called “transcriptional clock”. It is then concluded that proteins interact frequently and transiently with promoters and different proteins interact with the promoter at different stages of transcriptional progression. The phenomenon of transcriptional burst questions how the cellular signaling is achieved through such a noisy manner. While the burst frequency or size, or both are potentially modulated by transcriptional activators, more evidence supports the mode of frequency modulation. The technical difficulties in investigating the mechanism of transcription include 1) structural characterization of flexible and/or unstable proteins or protein complexes, 2) measurement of intermolecular kinetics, 3) tracking of single molecule movement, and 4) lack of methodology in theoretical research. We further propose a research strategy based on the ensemble statistical method, and introduce a model for how the TA dynamically operates. The model may act as a benchmark for further investigations. The operating mechanism of the TA should reflect an optimal use of physics laws as a result of long-term biological evolution.
-
Keywords:
- molecular structure /
- signal transduction /
- stochastic process /
- biological phenomena
[1] Brivanlou A H, Darnell Jr J E 2002 Science 295 813
Google Scholar
[2] Blake W J, Kaern M, Cantor C R, Collins J J 2003 Nature 422 633
Google Scholar
[3] Gregor T, Tank D W, Wieschaus E F, Bialek W 2007 Cell 130 153
Google Scholar
[4] Weake V M, Workman J L 2010 Nat. Rev. Genet. 11 426
Google Scholar
[5] Fuda N J, Ardehali M B, Lis J T 2009 Nature 461 186
Google Scholar
[6] Senecal A, Munsky B, Proux F, Ly N, Braye F E, Zimmer C, Mueller F, Darzacq X 2014 Cell Rep. 8 75
Google Scholar
[7] Koonin E V 2015 Biol. Direct. 10 52
Google Scholar
[8] Bussard A E 2005 EMBO Rep. 6 691
Google Scholar
[9] Crick F 1970 Nature 227 561
Google Scholar
[10] Crick F H 1958 Symp. Soc. Exp. Biol. 12 138
[11] Hurwitz J 2005 J. Biol. Chem. 280 42477
Google Scholar
[12] Young R A 1991 Annu. Rev. Biochem. 60 689
Google Scholar
[13] Lis J T 2019 Nat. Struct. Mol. Biol. 26 777
Google Scholar
[14] Krishnamurthy S, Hampsey M 2009 Curr. Biol. 19 R153
Google Scholar
[15] Kornberg R D 2007 Proc. Natl. Acad. Sci. U.S.A. 104 12955
Google Scholar
[16] Wang D, Bushnell D A, Westover K D, Kaplan C D, Kornberg R D 2006 Cell 127 941
Google Scholar
[17] Westover K D, Bushnell D A, Kornberg R D 2004 Science 303 1014
Google Scholar
[18] Hahn S 2004 Nat. Struct. Mol. Biol. 11 394
Google Scholar
[19] Thomas M C, Chiang C M 2006 Crit. Rev. Biochem. Mol. Biol. 41 105
Google Scholar
[20] Cramer P, Bushnell D A, Kornberg R D 2001 Science 292 1863
Google Scholar
[21] Cramer P, Bushnell D A, Fu J, Gnatt A L, Maier-Davis B, Thompson N E, Burgess R R, Edwards A M, David P R, Kornberg R D 2000 Science 288 640
Google Scholar
[22] Fu J, Gnatt A L, Bushnell D A, Jensen G J, Thompson N E, Burgess R R, David P R, Kornberg R D 1999 Cell 98 799
Google Scholar
[23] Meredith G D, Chang W H, Li Y, Bushnell D A, Darst S A, Kornberg R D 1996 J. Mol. Biol. 258 413
Google Scholar
[24] Murakami K, Tsai K L, Kalisman N, Bushnell D A, Asturias F J, Kornberg R D 2015 Proc. Natl. Acad. Sci. U.S.A. 112 13543
Google Scholar
[25] Fazal F M, Meng C A, Murakami K, Kornberg R D, Block S M 2015 Nature 525 274
Google Scholar
[26] Schweikhard V, Meng C, Murakami K, Kaplan C D, Kornberg R D, Block S M 2014 Proc. Natl. Acad. Sci. U.S.A. 111 6642
Google Scholar
[27] Murakami K, Elmlund H, Kalisman N, Bushnell D A, Adams C M, Azubel M, Elmlund D, Levi-Kalisman Y, Liu X, Gibbons B J, Levitt M, Kornberg R D 2013 Science 342 1238724
Google Scholar
[28] Liu X, Bushnell D A, Kornberg R D 2013 Biochim. Biophys. Acta. 1829 2
Google Scholar
[29] Liu X, Bushnell D A, Wang D, Calero G, Kornberg R D 2010 Science 327 206
Google Scholar
[30] Kelleher R J, 3 rd, Flanagan P M, Kornberg R D 1990 Cell 61 1209
Google Scholar
[31] Flanagan P M, Kelleher R J, 3 rd, Sayre M H, Tschochner H, Kornberg R D 1991 Nature 350 436
Google Scholar
[32] Kim Y J, Bjorklund S, Li Y, Sayre M H, Kornberg R D 1994 Cell 77 599
Google Scholar
[33] Kim T K, Shiekhattar R 2015 Cell 162 948
Google Scholar
[34] Haberle V, Lenhard B 2016 Semin. Cell Dev. Biol. 57 11
Google Scholar
[35] Robinson P J, Trnka M J, Bushnell D A, Davis R E, Mattei P J, Burlingame A L, Kornberg R D 2016 Cell 166 1411
Google Scholar
[36] Robinson P J, Trnka M J, Pellarin R, Greenberg C H, Bushnell D A, Davis R, Burlingame A L, Sali A, Kornberg R D 2015 eLife 4 e08719
Google Scholar
[37] Plaschka C, Lariviere L, Wenzeck L, Seizl M, Hemann M, Tegunov D, Petrotchenko E V, Borchers C H, Baumeister W, Herzog F, Villa E, Cramer P 2015 Nature 518 376
Google Scholar
[38] Poss Z C, Ebmeier C C, Taatjes D J 2013 Crit. Rev. Biochem. Mol. Biol. 48 575
Google Scholar
[39] Casamassimi A, Napoli C 2007 Biochimie 89 1439
Google Scholar
[40] Takagi Y, Kornberg R D 2006 J. Biol. Chem. 281 80
Google Scholar
[41] Kornberg R D 2005 Trends Biochem. Sci. 30 235
Google Scholar
[42] Kornberg R D 2005 Trends Biochem. Sci. 30 221
Google Scholar
[43] Guo Y E, Manteiga J C, Henninger J E, Sabari B R, Dall’Agnese A, Hannett N M, Spille J H, Afeyan L K, Zamudio A V, Shrinivas K, Abraham B J, Boija A, Decker T M, Rimel J K, Fant C B, Lee T I, Cisse I I, Sharp P A, Taatjes D J, Young R A 2019 Nature 572 543
Google Scholar
[44] Wang Y, Liu F, Wang W 2012 Sci. Rep. 2 422
Google Scholar
[45] Meyer K D, Lin S C, Bernecky C, Gao Y, Taatjes D J 2010 Nat. Struct. Mol. Biol. 17 753
Google Scholar
[46] Natoli G, Saccani S, Bosisio D, Marazzi I 2005 Nat. Immunol. 6 439
Google Scholar
[47] Levine M, Cattoglio C, Tjian R 2014 Cell 157 13
Google Scholar
[48] Wang Y M, Austin R H, Cox E C 2006 Phys. Rev. Lett. 97 048302
Google Scholar
[49] Elf J, Li G W, Xie X S 2007 Science 316 1191
Google Scholar
[50] Whyte W A, Orlando D A, Hnisz D, Abraham B J, Lin C Y, Kagey M H, Rahl P B, Lee T I, Young R A 2013 Cell 153 307
Google Scholar
[51] Spitz F, Furlong E E M 2012 Nat. Rev. Genet. 13 613
Google Scholar
[52] Hahn S 2018 Cell 175 1723
Google Scholar
[53] Boija A, Klein I A, Sabari B R, Dall’Agnese A, Coffey E L, Zamudio A V, Li C H, Shrinivas K, Manteiga J C, Hannett N M, Abraham B J, Afeyan L K, Guo Y E, Rimel J K, Fant C B, Schuijers J, Lee T I, Taatjes D J, Young R A 2018 Cell 175 1842
Google Scholar
[54] Sabari B R, Dall’Agnese A, Boija A, Klein I A, Coffey E L, Shrinivas K, Abraham B J, Hannett N M, Zamudio A V, Manteiga J C, Li C H, Guo Y E, Day D S, Schuijers J, Vasile E, Malik S, Hnisz D, Lee T I, Cisse I I, Roeder R G, Sharp P A, Chakraborty A K, Young R A 2018 Science 361 eaar3958
Google Scholar
[55] Rippe K 2000 Biochemistry 39 2131
Google Scholar
[56] Atkinson M R, Pattaramanon N, Ninfa A J 2002 Mol. Microbiol. 46 1247
Google Scholar
[57] Lilja A E, Jenssen J R, Kahn J D 2004 J. Mol. Biol. 342 467
Google Scholar
[58] Huo Y X, Tian Z X, Rappas M, Wen J, Chen Y C, You C H, Zhang X, Buck M, Wang Y P, Kolb A 2006 Mol. Microbiol. 59 168
Google Scholar
[59] Wang Y, Liu F, Wang W 2016 Nucleic Acids Res. 44 10530
Google Scholar
[60] Elison G L, Xue Y, Song R, Acar M 2018 Cell Rep. 25 737
Google Scholar
[61] Donovan B T, Huynh A, Ball D A, Patel H P, Poirier M G, Larson D R, Ferguson M L, Lenstra T L 2019 EMBO J. 38 e100809
Google Scholar
[62] Karpova T S, Kim M J, Spriet C, Nalley K, Stasevich T J, Kherrouche Z, Heliot L, McNally J G 2008 Science 319 466
Google Scholar
[63] Métivier R, Reid G, Gannon F 2006 EMBO Rep. 7 161
Google Scholar
[64] Métivier R, Penot G, Hubner M R, Reid G, Brand H, Kos M, Gannon F 2003 Cell 115 751
Google Scholar
[65] Kang Z, Pirskanen A, Janne O A, Palvimo J J 2002 J. Biol. Chem. 277 48366
Google Scholar
[66] Liu Y, Xia X, Fondell J D, Yen P M 2006 Mol. Endocrinol. 20 483
Google Scholar
[67] Shang Y, Hu X, DiRenzo J, Lazar M A, Brown M 2000 Cell 103 843
Google Scholar
[68] Becker M, Baumann C, John S, Walker D A, Vigneron M, McNally J G, Hager G L 2002 EMBO Rep. 3 1188
Google Scholar
[69] Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy S M, Phair R D, Singer R H 2007 Nat. Struct. Mol. Biol. 14 796
Google Scholar
[70] Johnson T A, Elbi C, Parekh B S, Hager G L, John S 2008 Mol. Biol. Cell 19 3308
Google Scholar
[71] Catez F, Ueda T, Bustin M 2006 Nat. Struct. Mol. Biol. 13 305
Google Scholar
[72] Bosisio D, Marazzi I, Agresti A, Shimizu N, Bianchi M E, Natoli G 2006 EMBO J. 25 798
Google Scholar
[73] Reid G, Hubner M R, Métivier R, Brand H, Denger S, Manu D, Beaudouin J, Ellenberg J, Gannon F 2003 Mol. Cell 11 695
Google Scholar
[74] Hager G L, McNally J G, Misteli T 2009 Mol. Cell 35 741
Google Scholar
[75] Reid G, Gallais R, Métivier R 2009 Int. J. Biochem. Cell Biol. 41 155
Google Scholar
[76] Wang Y, Liu F, Li J, Wang W 2014 J. R. Soc. Interface 11 20140253
Google Scholar
[77] Lemaire V, Lee C F, Lei J, Métivier R, Glass L 2006 Phys. Rev. Lett. 96 198102
Google Scholar
[78] Krasnov A N, Mazina M Y, Nikolenko J V, Vorobyeva N E 2016 Cell Biosci. 6 15
Google Scholar
[79] Gourse R L, Landick R 2012 Cell 148 635
Google Scholar
[80] Lenstra T L, Rodriguez J, Chen H, Larson D R 2016 Annu. Rev. Biophys. 45 25
Google Scholar
[81] Raj A, van Oudenaarden A 2008 Cell 135 216
Google Scholar
[82] Hocine S, Raymond P, Zenklusen D, Chao J A, Singer R H 2013 Nat. Methods 10 119
Google Scholar
[83] Lim F, Peabody D S 2002 Nucleic Acids Res. 30 4138
Google Scholar
[84] Chubb J R, Trcek T, Shenoy S M, Singer R H 2006 Curr. Biol. 16 1018
Google Scholar
[85] Bertrand E, Chartrand P, Schaefer M, Shenoy S M, Singer R H, Long R M 1998 Mol. Cell 2 437
Google Scholar
[86] Tantale K, Mueller F, Kozulic-Pirher A, Lesne A, Victor J M, Robert M C, Capozi S, Chouaib R, Backer V, Mateos-Langerak J, Darzacq X, Zimmer C, Basyuk E, Bertrand E 2016 Nat. Commun. 7 12248
Google Scholar
[87] Fukaya T, Lim B, Levine M 2016 Cell 166 358
Google Scholar
[88] Corrigan A M, Tunnacliffe E, Cannon D, Chubb J R 2016 eLife 5 e13051
Google Scholar
[89] Chong S, Chen C, Ge H, Xie X S 2014 Cell 158 314
Google Scholar
[90] Suter D M, Molina N, Gatfield D, Schneider K, Schibler U, Naef F 2011 Science 332 472
Google Scholar
[91] Tripathi T, Chowdhury D 2008 EPL 84 68004
Google Scholar
[92] Golding I, Paulsson J, Zawilski S M, Cox E C 2005 Cell 123 1025
Google Scholar
[93] Raj A, Peskin C S, Tranchina D, Vargas D Y, Tyagi S 2006 PLoS Biol. 4 e309
Google Scholar
[94] Sanchez A, Golding I 2013 Science 342 1188
Google Scholar
[95] Wang Y, Ni T, Wang W, Liu F 2019 Biol. Rev. 94 248
Google Scholar
[96] Tunnacliffe E, Chubb J R 2020 Trends Genet. 36 288
Google Scholar
[97] Yao J 2017 J. Mol. Biol. 429 14
Google Scholar
[98] Nicolas D, Phillips N E, Naef F 2017 Mol. Biosyst. 13 1280
Google Scholar
[99] Hnisz D, Shrinivas K, Young R A, Chakraborty A K, Sharp P A 2017 Cell 169 13
Google Scholar
[100] Chubb J R 2017 Wiley Interdiscip. Rev.-Dev. Biol. 6 e284
Google Scholar
[101] Bressloff P C 2017 J. Phys. A-Math. Theor. 50 133001
Google Scholar
[102] Reinius B, Sandberg R 2015 Nat. Rev. Genet. 16 653
Google Scholar
[103] Munsky B, Neuert G 2015 Phys. Biol. 12 045004
Google Scholar
[104] Munsky B, Fox Z, Neuert G 2015 Methods 85 12
Google Scholar
[105] Boeger H, Shelansky R, Patel H, Brown C R 2015 Genes 6 469
Google Scholar
[106] Skupsky R, Burnett J C, Foley J E, Schaffer D V, Arkin A P 2010 PLoS Comput. Biol. 6 e1000952
Google Scholar
[107] Dar R D, Razooky B S, Singh A, Trimeloni T V, McCollum J M, Cox C D, Simpson M L, Weinberger L S 2012 Proc. Natl. Acad. Sci. U.S.A. 109 17454
Google Scholar
[108] Molina N, Suter D M, Cannavo R, Zoller B, Gotic I, Naef F 2013 Proc. Natl. Acad. Sci. U.S.A. 110 20563
Google Scholar
[109] Corrigan A M, Chubb J R 2014 Curr. Biol. 24 205
Google Scholar
[110] Giri R, Papadopoulos D K, Posadas D M, Potluri H K, Tomancak P, Mani M, Carthew R W 2020 eLife 9 e53638
Google Scholar
[111] Lammers N C, Galstyan V, Reimer A, Medin S A, Wiggins C H, Garcia H G 2020 Proc. Natl. Acad. Sci. U.S.A. 117 836
Google Scholar
[112] Tian X, Huang B, Zhang X P, Lu M, Liu F, Onuchic J N, Wang W 2017 Proc. Natl. Acad. Sci. U.S.A. 114 5337
Google Scholar
[113] Ko M S 1992 Bioessays 14 341
Google Scholar
[114] Sanchez A, Choubey S, Kondev J 2013 Methods 62 13
Google Scholar
[115] Peccoud J, Ycart B 1995 Theor. Popul. 48 222
Google Scholar
[116] Pedraza J M, Paulsson J 2008 Science 319 339
Google Scholar
[117] Freeman B C, Yamamoto K R 2002 Science 296 2232
Google Scholar
[118] Stavreva D A, Muller W G, Hager G L, Smith C L, McNally J G 2004 Mol. Cell. Biol. 24 2682
Google Scholar
[119] Wang Y, Qi J, Shao J, Tang X Q 2020 Biology 9 339
Google Scholar
-
图 2 媒介子工作原理的两大模型 (a) 相分离模型; (b) 变构模型
Fig. 2. Two models of how the Mediator complex operates: (a) The Mediator acts to nucleate the flexible CTDs of Pol IIs, with the efficiency of Pol II assembly elevated; (b) an enhancer-bound activator induces allostery in the Mediator, resulting in a facilitated circumstance for transcription initiation.
图 3 增强子工作原理的两种模型 (a) 液滴模型; (b) 分工协作模型
Fig. 3. Two models of how the enhancers function: (a) In the phase separation model, enhancers recruit transcriptional activators that further recruit various coactivators and the transcriptional apparatus via low-affinity disordered regions; (b) every enhancer plays a unique role and different enhancers cooperate to orchestrate transcription regulation. Shown is an example of regulatory mode at the glnAp2 promoter.
-
[1] Brivanlou A H, Darnell Jr J E 2002 Science 295 813
Google Scholar
[2] Blake W J, Kaern M, Cantor C R, Collins J J 2003 Nature 422 633
Google Scholar
[3] Gregor T, Tank D W, Wieschaus E F, Bialek W 2007 Cell 130 153
Google Scholar
[4] Weake V M, Workman J L 2010 Nat. Rev. Genet. 11 426
Google Scholar
[5] Fuda N J, Ardehali M B, Lis J T 2009 Nature 461 186
Google Scholar
[6] Senecal A, Munsky B, Proux F, Ly N, Braye F E, Zimmer C, Mueller F, Darzacq X 2014 Cell Rep. 8 75
Google Scholar
[7] Koonin E V 2015 Biol. Direct. 10 52
Google Scholar
[8] Bussard A E 2005 EMBO Rep. 6 691
Google Scholar
[9] Crick F 1970 Nature 227 561
Google Scholar
[10] Crick F H 1958 Symp. Soc. Exp. Biol. 12 138
[11] Hurwitz J 2005 J. Biol. Chem. 280 42477
Google Scholar
[12] Young R A 1991 Annu. Rev. Biochem. 60 689
Google Scholar
[13] Lis J T 2019 Nat. Struct. Mol. Biol. 26 777
Google Scholar
[14] Krishnamurthy S, Hampsey M 2009 Curr. Biol. 19 R153
Google Scholar
[15] Kornberg R D 2007 Proc. Natl. Acad. Sci. U.S.A. 104 12955
Google Scholar
[16] Wang D, Bushnell D A, Westover K D, Kaplan C D, Kornberg R D 2006 Cell 127 941
Google Scholar
[17] Westover K D, Bushnell D A, Kornberg R D 2004 Science 303 1014
Google Scholar
[18] Hahn S 2004 Nat. Struct. Mol. Biol. 11 394
Google Scholar
[19] Thomas M C, Chiang C M 2006 Crit. Rev. Biochem. Mol. Biol. 41 105
Google Scholar
[20] Cramer P, Bushnell D A, Kornberg R D 2001 Science 292 1863
Google Scholar
[21] Cramer P, Bushnell D A, Fu J, Gnatt A L, Maier-Davis B, Thompson N E, Burgess R R, Edwards A M, David P R, Kornberg R D 2000 Science 288 640
Google Scholar
[22] Fu J, Gnatt A L, Bushnell D A, Jensen G J, Thompson N E, Burgess R R, David P R, Kornberg R D 1999 Cell 98 799
Google Scholar
[23] Meredith G D, Chang W H, Li Y, Bushnell D A, Darst S A, Kornberg R D 1996 J. Mol. Biol. 258 413
Google Scholar
[24] Murakami K, Tsai K L, Kalisman N, Bushnell D A, Asturias F J, Kornberg R D 2015 Proc. Natl. Acad. Sci. U.S.A. 112 13543
Google Scholar
[25] Fazal F M, Meng C A, Murakami K, Kornberg R D, Block S M 2015 Nature 525 274
Google Scholar
[26] Schweikhard V, Meng C, Murakami K, Kaplan C D, Kornberg R D, Block S M 2014 Proc. Natl. Acad. Sci. U.S.A. 111 6642
Google Scholar
[27] Murakami K, Elmlund H, Kalisman N, Bushnell D A, Adams C M, Azubel M, Elmlund D, Levi-Kalisman Y, Liu X, Gibbons B J, Levitt M, Kornberg R D 2013 Science 342 1238724
Google Scholar
[28] Liu X, Bushnell D A, Kornberg R D 2013 Biochim. Biophys. Acta. 1829 2
Google Scholar
[29] Liu X, Bushnell D A, Wang D, Calero G, Kornberg R D 2010 Science 327 206
Google Scholar
[30] Kelleher R J, 3 rd, Flanagan P M, Kornberg R D 1990 Cell 61 1209
Google Scholar
[31] Flanagan P M, Kelleher R J, 3 rd, Sayre M H, Tschochner H, Kornberg R D 1991 Nature 350 436
Google Scholar
[32] Kim Y J, Bjorklund S, Li Y, Sayre M H, Kornberg R D 1994 Cell 77 599
Google Scholar
[33] Kim T K, Shiekhattar R 2015 Cell 162 948
Google Scholar
[34] Haberle V, Lenhard B 2016 Semin. Cell Dev. Biol. 57 11
Google Scholar
[35] Robinson P J, Trnka M J, Bushnell D A, Davis R E, Mattei P J, Burlingame A L, Kornberg R D 2016 Cell 166 1411
Google Scholar
[36] Robinson P J, Trnka M J, Pellarin R, Greenberg C H, Bushnell D A, Davis R, Burlingame A L, Sali A, Kornberg R D 2015 eLife 4 e08719
Google Scholar
[37] Plaschka C, Lariviere L, Wenzeck L, Seizl M, Hemann M, Tegunov D, Petrotchenko E V, Borchers C H, Baumeister W, Herzog F, Villa E, Cramer P 2015 Nature 518 376
Google Scholar
[38] Poss Z C, Ebmeier C C, Taatjes D J 2013 Crit. Rev. Biochem. Mol. Biol. 48 575
Google Scholar
[39] Casamassimi A, Napoli C 2007 Biochimie 89 1439
Google Scholar
[40] Takagi Y, Kornberg R D 2006 J. Biol. Chem. 281 80
Google Scholar
[41] Kornberg R D 2005 Trends Biochem. Sci. 30 235
Google Scholar
[42] Kornberg R D 2005 Trends Biochem. Sci. 30 221
Google Scholar
[43] Guo Y E, Manteiga J C, Henninger J E, Sabari B R, Dall’Agnese A, Hannett N M, Spille J H, Afeyan L K, Zamudio A V, Shrinivas K, Abraham B J, Boija A, Decker T M, Rimel J K, Fant C B, Lee T I, Cisse I I, Sharp P A, Taatjes D J, Young R A 2019 Nature 572 543
Google Scholar
[44] Wang Y, Liu F, Wang W 2012 Sci. Rep. 2 422
Google Scholar
[45] Meyer K D, Lin S C, Bernecky C, Gao Y, Taatjes D J 2010 Nat. Struct. Mol. Biol. 17 753
Google Scholar
[46] Natoli G, Saccani S, Bosisio D, Marazzi I 2005 Nat. Immunol. 6 439
Google Scholar
[47] Levine M, Cattoglio C, Tjian R 2014 Cell 157 13
Google Scholar
[48] Wang Y M, Austin R H, Cox E C 2006 Phys. Rev. Lett. 97 048302
Google Scholar
[49] Elf J, Li G W, Xie X S 2007 Science 316 1191
Google Scholar
[50] Whyte W A, Orlando D A, Hnisz D, Abraham B J, Lin C Y, Kagey M H, Rahl P B, Lee T I, Young R A 2013 Cell 153 307
Google Scholar
[51] Spitz F, Furlong E E M 2012 Nat. Rev. Genet. 13 613
Google Scholar
[52] Hahn S 2018 Cell 175 1723
Google Scholar
[53] Boija A, Klein I A, Sabari B R, Dall’Agnese A, Coffey E L, Zamudio A V, Li C H, Shrinivas K, Manteiga J C, Hannett N M, Abraham B J, Afeyan L K, Guo Y E, Rimel J K, Fant C B, Schuijers J, Lee T I, Taatjes D J, Young R A 2018 Cell 175 1842
Google Scholar
[54] Sabari B R, Dall’Agnese A, Boija A, Klein I A, Coffey E L, Shrinivas K, Abraham B J, Hannett N M, Zamudio A V, Manteiga J C, Li C H, Guo Y E, Day D S, Schuijers J, Vasile E, Malik S, Hnisz D, Lee T I, Cisse I I, Roeder R G, Sharp P A, Chakraborty A K, Young R A 2018 Science 361 eaar3958
Google Scholar
[55] Rippe K 2000 Biochemistry 39 2131
Google Scholar
[56] Atkinson M R, Pattaramanon N, Ninfa A J 2002 Mol. Microbiol. 46 1247
Google Scholar
[57] Lilja A E, Jenssen J R, Kahn J D 2004 J. Mol. Biol. 342 467
Google Scholar
[58] Huo Y X, Tian Z X, Rappas M, Wen J, Chen Y C, You C H, Zhang X, Buck M, Wang Y P, Kolb A 2006 Mol. Microbiol. 59 168
Google Scholar
[59] Wang Y, Liu F, Wang W 2016 Nucleic Acids Res. 44 10530
Google Scholar
[60] Elison G L, Xue Y, Song R, Acar M 2018 Cell Rep. 25 737
Google Scholar
[61] Donovan B T, Huynh A, Ball D A, Patel H P, Poirier M G, Larson D R, Ferguson M L, Lenstra T L 2019 EMBO J. 38 e100809
Google Scholar
[62] Karpova T S, Kim M J, Spriet C, Nalley K, Stasevich T J, Kherrouche Z, Heliot L, McNally J G 2008 Science 319 466
Google Scholar
[63] Métivier R, Reid G, Gannon F 2006 EMBO Rep. 7 161
Google Scholar
[64] Métivier R, Penot G, Hubner M R, Reid G, Brand H, Kos M, Gannon F 2003 Cell 115 751
Google Scholar
[65] Kang Z, Pirskanen A, Janne O A, Palvimo J J 2002 J. Biol. Chem. 277 48366
Google Scholar
[66] Liu Y, Xia X, Fondell J D, Yen P M 2006 Mol. Endocrinol. 20 483
Google Scholar
[67] Shang Y, Hu X, DiRenzo J, Lazar M A, Brown M 2000 Cell 103 843
Google Scholar
[68] Becker M, Baumann C, John S, Walker D A, Vigneron M, McNally J G, Hager G L 2002 EMBO Rep. 3 1188
Google Scholar
[69] Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy S M, Phair R D, Singer R H 2007 Nat. Struct. Mol. Biol. 14 796
Google Scholar
[70] Johnson T A, Elbi C, Parekh B S, Hager G L, John S 2008 Mol. Biol. Cell 19 3308
Google Scholar
[71] Catez F, Ueda T, Bustin M 2006 Nat. Struct. Mol. Biol. 13 305
Google Scholar
[72] Bosisio D, Marazzi I, Agresti A, Shimizu N, Bianchi M E, Natoli G 2006 EMBO J. 25 798
Google Scholar
[73] Reid G, Hubner M R, Métivier R, Brand H, Denger S, Manu D, Beaudouin J, Ellenberg J, Gannon F 2003 Mol. Cell 11 695
Google Scholar
[74] Hager G L, McNally J G, Misteli T 2009 Mol. Cell 35 741
Google Scholar
[75] Reid G, Gallais R, Métivier R 2009 Int. J. Biochem. Cell Biol. 41 155
Google Scholar
[76] Wang Y, Liu F, Li J, Wang W 2014 J. R. Soc. Interface 11 20140253
Google Scholar
[77] Lemaire V, Lee C F, Lei J, Métivier R, Glass L 2006 Phys. Rev. Lett. 96 198102
Google Scholar
[78] Krasnov A N, Mazina M Y, Nikolenko J V, Vorobyeva N E 2016 Cell Biosci. 6 15
Google Scholar
[79] Gourse R L, Landick R 2012 Cell 148 635
Google Scholar
[80] Lenstra T L, Rodriguez J, Chen H, Larson D R 2016 Annu. Rev. Biophys. 45 25
Google Scholar
[81] Raj A, van Oudenaarden A 2008 Cell 135 216
Google Scholar
[82] Hocine S, Raymond P, Zenklusen D, Chao J A, Singer R H 2013 Nat. Methods 10 119
Google Scholar
[83] Lim F, Peabody D S 2002 Nucleic Acids Res. 30 4138
Google Scholar
[84] Chubb J R, Trcek T, Shenoy S M, Singer R H 2006 Curr. Biol. 16 1018
Google Scholar
[85] Bertrand E, Chartrand P, Schaefer M, Shenoy S M, Singer R H, Long R M 1998 Mol. Cell 2 437
Google Scholar
[86] Tantale K, Mueller F, Kozulic-Pirher A, Lesne A, Victor J M, Robert M C, Capozi S, Chouaib R, Backer V, Mateos-Langerak J, Darzacq X, Zimmer C, Basyuk E, Bertrand E 2016 Nat. Commun. 7 12248
Google Scholar
[87] Fukaya T, Lim B, Levine M 2016 Cell 166 358
Google Scholar
[88] Corrigan A M, Tunnacliffe E, Cannon D, Chubb J R 2016 eLife 5 e13051
Google Scholar
[89] Chong S, Chen C, Ge H, Xie X S 2014 Cell 158 314
Google Scholar
[90] Suter D M, Molina N, Gatfield D, Schneider K, Schibler U, Naef F 2011 Science 332 472
Google Scholar
[91] Tripathi T, Chowdhury D 2008 EPL 84 68004
Google Scholar
[92] Golding I, Paulsson J, Zawilski S M, Cox E C 2005 Cell 123 1025
Google Scholar
[93] Raj A, Peskin C S, Tranchina D, Vargas D Y, Tyagi S 2006 PLoS Biol. 4 e309
Google Scholar
[94] Sanchez A, Golding I 2013 Science 342 1188
Google Scholar
[95] Wang Y, Ni T, Wang W, Liu F 2019 Biol. Rev. 94 248
Google Scholar
[96] Tunnacliffe E, Chubb J R 2020 Trends Genet. 36 288
Google Scholar
[97] Yao J 2017 J. Mol. Biol. 429 14
Google Scholar
[98] Nicolas D, Phillips N E, Naef F 2017 Mol. Biosyst. 13 1280
Google Scholar
[99] Hnisz D, Shrinivas K, Young R A, Chakraborty A K, Sharp P A 2017 Cell 169 13
Google Scholar
[100] Chubb J R 2017 Wiley Interdiscip. Rev.-Dev. Biol. 6 e284
Google Scholar
[101] Bressloff P C 2017 J. Phys. A-Math. Theor. 50 133001
Google Scholar
[102] Reinius B, Sandberg R 2015 Nat. Rev. Genet. 16 653
Google Scholar
[103] Munsky B, Neuert G 2015 Phys. Biol. 12 045004
Google Scholar
[104] Munsky B, Fox Z, Neuert G 2015 Methods 85 12
Google Scholar
[105] Boeger H, Shelansky R, Patel H, Brown C R 2015 Genes 6 469
Google Scholar
[106] Skupsky R, Burnett J C, Foley J E, Schaffer D V, Arkin A P 2010 PLoS Comput. Biol. 6 e1000952
Google Scholar
[107] Dar R D, Razooky B S, Singh A, Trimeloni T V, McCollum J M, Cox C D, Simpson M L, Weinberger L S 2012 Proc. Natl. Acad. Sci. U.S.A. 109 17454
Google Scholar
[108] Molina N, Suter D M, Cannavo R, Zoller B, Gotic I, Naef F 2013 Proc. Natl. Acad. Sci. U.S.A. 110 20563
Google Scholar
[109] Corrigan A M, Chubb J R 2014 Curr. Biol. 24 205
Google Scholar
[110] Giri R, Papadopoulos D K, Posadas D M, Potluri H K, Tomancak P, Mani M, Carthew R W 2020 eLife 9 e53638
Google Scholar
[111] Lammers N C, Galstyan V, Reimer A, Medin S A, Wiggins C H, Garcia H G 2020 Proc. Natl. Acad. Sci. U.S.A. 117 836
Google Scholar
[112] Tian X, Huang B, Zhang X P, Lu M, Liu F, Onuchic J N, Wang W 2017 Proc. Natl. Acad. Sci. U.S.A. 114 5337
Google Scholar
[113] Ko M S 1992 Bioessays 14 341
Google Scholar
[114] Sanchez A, Choubey S, Kondev J 2013 Methods 62 13
Google Scholar
[115] Peccoud J, Ycart B 1995 Theor. Popul. 48 222
Google Scholar
[116] Pedraza J M, Paulsson J 2008 Science 319 339
Google Scholar
[117] Freeman B C, Yamamoto K R 2002 Science 296 2232
Google Scholar
[118] Stavreva D A, Muller W G, Hager G L, Smith C L, McNally J G 2004 Mol. Cell. Biol. 24 2682
Google Scholar
[119] Wang Y, Qi J, Shao J, Tang X Q 2020 Biology 9 339
Google Scholar
计量
- 文章访问数: 8802
- PDF下载量: 194
- 被引次数: 0