搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浸没于带电纳米粒子溶液中的聚电解质刷: 强拉伸理论

瞿立建

引用本文:
Citation:

浸没于带电纳米粒子溶液中的聚电解质刷: 强拉伸理论

瞿立建

Analytical strong-stretching theory of polyelectrolyte brushes loaded with charged nanoparticles

Qu Li-Jian
PDF
HTML
导出引用
  • 纳米粒子是调控聚电解质刷行为的一种新手段, 聚电解质刷是调控纳米粒子与表面相互作用的一种重要媒介, 本文应用强拉伸理论研究了聚电解质刷浸没于带同种电荷的纳米粒子溶液中的行为. 给出了聚电解质刷、纳米粒子、反离子的密度分布和刷厚度的解析表达式, 基于解析表达式, 得到了体系的特征标度关系. 当纳米粒子浓度$\varPhi$较高, 电量Z较低时, 纳米粒子可以渗入聚电解质刷内部. 当纳米粒子浓度$\varPhi$相对较低, 电量Z较高时, 纳米粒子几乎不能渗入刷内部, 但依然可以影响刷的厚度. 在前一种情形下, 刷行为由反离子、纳米粒子的渗透压与链的熵弹性之间的竞争决定, 刷厚度满足的标度关系为$H \approx (Z\varPhi)^{-1/3}$; 在后一种情形下, 刷行为由反离子的渗透压与链的熵弹性之间的竞争决定, 刷厚度满足的标度关系为$H \approx (Z\varPhi)^{-1}$. 本文还探究了纳米粒子多分散性的效应.
    Nanoparticles can be used to tune the properties of polyelectrolyte brushes, and polyelectrolyte brushes can be used to control the interaction between nanoparticles and substrates. In the present paper, we investigate the polyelectrolyte brushes immersed in a nanoparticle solution within the analytical strong-stretching theoretical framework. The theoretical model does not take the excluded volume interaction between any two components into account. When there is no nanoparticle loaded, the polyelectrolyte brush is assumed to be an osmotic brush. Local electroneutral approximation is assumed to be still valid after the nanoparticles have been loaded. The loaded nanoparticles are not big enough to deform the grafted polyelectrolyte chains laterally. Analytical formulae for density profiles of each component and brush thickness are derived. The loaded nanoparticles always compress the polyelectrolyte brush. By analyzing the limiting case, a scaling-type diagram for behaviors of the nanoparticle-loading polyelectrolyte brush is constructed. Two characteristic nanoparticle controlling regimes are shown. When the charge of the nanoparticle, Z, is not very large, charged nanoparticles penetrate into the brush and the brush thickness is scaled by $H \sim (Z\varPhi)^{-1/3}$, where $\varPhi$ is the nanoparticle volume fraction. When the nanoparticle charge Z is large enough, nanoparticles are mainly distributed outside the brush and the brush thickness is scaled by $H \sim (Z\varPhi)^{-1}$. In the former case, the Coulombic repulsion between the grafted polyelectrolyte chains is screened by the counterions and the nanoparticles, and the brush behavior is determined by the balance between the chain elasticity and the osmotic pressure of the counterions and the nanoparticles. In the latter case, the electrostatic screening is executed by the counterions, and the chain elasticity is balanced by the osmotic pressure of the counterions. The two regimes are divided into subregimes which are dominated respectively by electrostatic or non-electrostatic interaction. The effects of size polydispersity of the nanoparticles are also investigated. It is found that the behaviors of the grafted polyelectrolyte chains are mainly determined by the ratio between the first two moments of the nanoparticle size distribution function. The polyelectrolyte brush is compressed more by the polydispere nanoparticles than by the monodisperse ones. Possible improvement in the present theory is discussed in the conclusion section.
      通信作者: 瞿立建, qulijian@cidp.edu.cn
    • 基金项目: 国家级-国家自然科学基金(21504014)
      Corresponding author: Qu Li-Jian, qulijian@cidp.edu.cn
    [1]

    Ballauff M, Borisov O V 2006 Curr. Opin. Colloid Interface Sci. 11 316Google Scholar

    [2]

    Toomey R, Tirrell M 2008 Annu. Rev. Phys. Chem. 59 493Google Scholar

    [3]

    Rühe J, Ballauff M, Biesalski M, Dziezok P, Gröhn F, Johannsmann D, Houbenov N, Hugenberg N, Konradi R, Minko S, Motornov M, Netz R R, Schmidt M, Seidel C, Stamm M, Stephan T, Usov D, Zhan H 2004 Adv. Polym. Sci. 165 79

    [4]

    Naji A, Seidel C, Netz R R 2006 Adv. Polym. Sci. 198 149

    [5]

    Guenoun P 2011 Polyelectrolyte Brushes: Twenty Years After. In Functional Polymer Films (Weinheim: Wiley-VCH) pp219–237

    [6]

    Das S, Banik M, Chen G, Sinha S, Mukherjee R 2015 Soft Matter 11 8550Google Scholar

    [7]

    Willott J D, Murdoch T J, Webber G B, Wanless E J 2017 Prog. Polym. Sci. 64 52Google Scholar

    [8]

    Chen T, Ferris R, Zhang J, Ducker R, Zauscher S 2010 Prog. Polym. Sci. 35 94Google Scholar

    [9]

    Zoppe J O, Ataman N C, Mocny P, Wang J, Moraes J, Klok H A 2017 Chem. Rev. 117 1105Google Scholar

    [10]

    Santos D E S, Li D, Ramstedt M, Gautrot J E, Soares T A 2019 Langmuir 35 5037Google Scholar

    [11]

    Yenice Z, Schön S, Bildirir H, Genzer J, von Klitzing R 2015 J. Phys. Chem. B 119 10348Google Scholar

    [12]

    Christau S, Möller T, Yenice Z, Genzer J, von Klitzing R 2014 Polymers 6 1877Google Scholar

    [13]

    Christau S, Möller T, Yenice Z, Genzer J, von Klitzing R 2014 Langmuir 30 13033Google Scholar

    [14]

    Zhu Y, Chen K, Wang X, Guo X 2012 Nanotechnology 23 265601Google Scholar

    [15]

    Su X, Lei Q, Ren C 2015 Chin. Phys. B 24 113601Google Scholar

    [16]

    Koenig M, König U, Eichhorn K J, Müller M, Stamm M, Uhlmann P 2019 Front Chem. 7 101Google Scholar

    [17]

    Kowalczyk S W, Kapinos L, Blosser T R, Magalhães T, van Nies P, Lim R Y, Dekker C 2011 Nat. Nanotechnol. 6 433Google Scholar

    [18]

    Senaratne W, Andruzzi L, Ober C K 2005 Biomacromolecules 6 2427Google Scholar

    [19]

    Bai H, Zhang H, He Y, Liu J, Zhang B, Wang J 2014 J. Membr. Sci. 454 220Google Scholar

    [20]

    Eisele N B, Frey S, Piehler J, Görlich D, Richter R P 2010 EMBO Rep. 11 366Google Scholar

    [21]

    Hardingham T, Mu ir, Biochim H 1972 Biophys. Acta 279 401Google Scholar

    [22]

    Milner S T, Witten T A, Cates M E 1988 Macromolecules 21 2610Google Scholar

    [23]

    Zhulina E B, Priamitsyn V A, Borisov O V 1989 Polym. Sci. USSR 31 205Google Scholar

    [24]

    Kim J U, O’Shaughnessy B 2002 Phys. Rev. Lett. 89 238301Google Scholar

    [25]

    Opferman M G, Coalson R D, Jasnow D, Zilman A 2012 Phys. Rev. E 86 031806Google Scholar

    [26]

    Gu C, Coalson R D, Jasnow D, Zilman A 2017 J. Phys. Chem. B 121 6425Google Scholar

    [27]

    Ozmaian M, Jasnow D, Eskandari Nasrabad A, Zilman A, Coalson R D 2018 J. Chem. Phys. 148 024902Google Scholar

    [28]

    Szleifer I 1997 Biophys. J. 72 595Google Scholar

    [29]

    Zhulina E B, Borisov O V 1997 J. Chem. Phys. 107 5952

    [30]

    Zhulina E B, Borisov O V, Birshtein T M 1992 J. Phys. II France 2 63Google Scholar

    [31]

    Israels R, Leermakers J F A M, Fleer G J, Zhulina E B 1994 Macromolecules 27 3249Google Scholar

    [32]

    Borisov O V, Zhulina E B, Birshtein T M 1994 Macromolecules 27 4795Google Scholar

  • 图 1  聚电解质刷浸没于纳米粒子溶液示意图

    Fig. 1.  Schematic of a polyelectrolyte brush immersed in a nanoparticle solution

    图 2  刷厚度$ h $与接枝链电离的反离子与纳米粒子反离子体积分数之比$ \gamma $之间的关系. 图中所标注的$ Z $为纳米粒子电量

    Fig. 2.  Dependence of brush thickness $ h $ on the ratio of the concentrations of counterions dissociated from the grafted chains and that dissociated from the nanoparticles. The indicated $ Z $ is the quantity of the charge beard by the nanoparticle

    图 3  浸没于纳米粒子溶液中的聚电解质刷标度关系示意图

    Fig. 3.  The scaling-type diagram of a polyelectrolyte brush loaded with nanoparticles

    Baidu
  • [1]

    Ballauff M, Borisov O V 2006 Curr. Opin. Colloid Interface Sci. 11 316Google Scholar

    [2]

    Toomey R, Tirrell M 2008 Annu. Rev. Phys. Chem. 59 493Google Scholar

    [3]

    Rühe J, Ballauff M, Biesalski M, Dziezok P, Gröhn F, Johannsmann D, Houbenov N, Hugenberg N, Konradi R, Minko S, Motornov M, Netz R R, Schmidt M, Seidel C, Stamm M, Stephan T, Usov D, Zhan H 2004 Adv. Polym. Sci. 165 79

    [4]

    Naji A, Seidel C, Netz R R 2006 Adv. Polym. Sci. 198 149

    [5]

    Guenoun P 2011 Polyelectrolyte Brushes: Twenty Years After. In Functional Polymer Films (Weinheim: Wiley-VCH) pp219–237

    [6]

    Das S, Banik M, Chen G, Sinha S, Mukherjee R 2015 Soft Matter 11 8550Google Scholar

    [7]

    Willott J D, Murdoch T J, Webber G B, Wanless E J 2017 Prog. Polym. Sci. 64 52Google Scholar

    [8]

    Chen T, Ferris R, Zhang J, Ducker R, Zauscher S 2010 Prog. Polym. Sci. 35 94Google Scholar

    [9]

    Zoppe J O, Ataman N C, Mocny P, Wang J, Moraes J, Klok H A 2017 Chem. Rev. 117 1105Google Scholar

    [10]

    Santos D E S, Li D, Ramstedt M, Gautrot J E, Soares T A 2019 Langmuir 35 5037Google Scholar

    [11]

    Yenice Z, Schön S, Bildirir H, Genzer J, von Klitzing R 2015 J. Phys. Chem. B 119 10348Google Scholar

    [12]

    Christau S, Möller T, Yenice Z, Genzer J, von Klitzing R 2014 Polymers 6 1877Google Scholar

    [13]

    Christau S, Möller T, Yenice Z, Genzer J, von Klitzing R 2014 Langmuir 30 13033Google Scholar

    [14]

    Zhu Y, Chen K, Wang X, Guo X 2012 Nanotechnology 23 265601Google Scholar

    [15]

    Su X, Lei Q, Ren C 2015 Chin. Phys. B 24 113601Google Scholar

    [16]

    Koenig M, König U, Eichhorn K J, Müller M, Stamm M, Uhlmann P 2019 Front Chem. 7 101Google Scholar

    [17]

    Kowalczyk S W, Kapinos L, Blosser T R, Magalhães T, van Nies P, Lim R Y, Dekker C 2011 Nat. Nanotechnol. 6 433Google Scholar

    [18]

    Senaratne W, Andruzzi L, Ober C K 2005 Biomacromolecules 6 2427Google Scholar

    [19]

    Bai H, Zhang H, He Y, Liu J, Zhang B, Wang J 2014 J. Membr. Sci. 454 220Google Scholar

    [20]

    Eisele N B, Frey S, Piehler J, Görlich D, Richter R P 2010 EMBO Rep. 11 366Google Scholar

    [21]

    Hardingham T, Mu ir, Biochim H 1972 Biophys. Acta 279 401Google Scholar

    [22]

    Milner S T, Witten T A, Cates M E 1988 Macromolecules 21 2610Google Scholar

    [23]

    Zhulina E B, Priamitsyn V A, Borisov O V 1989 Polym. Sci. USSR 31 205Google Scholar

    [24]

    Kim J U, O’Shaughnessy B 2002 Phys. Rev. Lett. 89 238301Google Scholar

    [25]

    Opferman M G, Coalson R D, Jasnow D, Zilman A 2012 Phys. Rev. E 86 031806Google Scholar

    [26]

    Gu C, Coalson R D, Jasnow D, Zilman A 2017 J. Phys. Chem. B 121 6425Google Scholar

    [27]

    Ozmaian M, Jasnow D, Eskandari Nasrabad A, Zilman A, Coalson R D 2018 J. Chem. Phys. 148 024902Google Scholar

    [28]

    Szleifer I 1997 Biophys. J. 72 595Google Scholar

    [29]

    Zhulina E B, Borisov O V 1997 J. Chem. Phys. 107 5952

    [30]

    Zhulina E B, Borisov O V, Birshtein T M 1992 J. Phys. II France 2 63Google Scholar

    [31]

    Israels R, Leermakers J F A M, Fleer G J, Zhulina E B 1994 Macromolecules 27 3249Google Scholar

    [32]

    Borisov O V, Zhulina E B, Birshtein T M 1994 Macromolecules 27 4795Google Scholar

  • [1] 李长亮, 陈智辉, 冯光, 王晓伟, 杨毅彪, 费宏明, 孙非, 刘一超. 基于波导-同心环形谐振腔模型的纳米流体荧光颗粒微位移检测.  , 2022, 71(20): 204702. doi: 10.7498/aps.71.20220771
    [2] 邵光伟, 郭珊珊, 于瑞, 陈南梁, 叶美丹, 刘向阳. 可拉伸超级电容器的研究进展:电极、电解质和器件.  , 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [3] 赵新军, 李九智, 石铭芸, 马超. 接枝在纳米粒子表面的聚异丙基丙烯酰胺刷构象转变中的硫氰酸根离子效应.  , 2019, 68(21): 214701. doi: 10.7498/aps.68.20190682
    [4] 王亚明, 刘永利, 张林. Ti纳米粒子熔化与凝结的原子尺度模拟.  , 2019, 68(16): 166402. doi: 10.7498/aps.68.20190228
    [5] 陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬. Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算.  , 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [6] 陈湘, 赵明骅. CeFe2-xInx合金磁性研究与CeFe1.95In0.05合金磁相变临界参数分析.  , 2018, 67(19): 197501. doi: 10.7498/aps.67.20180815
    [7] 刘勇波, 菅永军. 具有聚电解质层圆柱形纳米通道中的电动能量转换效率.  , 2016, 65(8): 084704. doi: 10.7498/aps.65.084704
    [8] 吴晨旭, 严大东, 邢向军, 厚美瑛. 软物质主要理论综述.  , 2016, 65(18): 186102. doi: 10.7498/aps.65.186102
    [9] 殷澄, 许田, 陈秉岩, 韩庆邦. 金属粒子阵列共振的偏振特性.  , 2015, 64(16): 164202. doi: 10.7498/aps.64.164202
    [10] 钱泽宇, 张林. 熔融TiAl合金纳米粒子在TiAl(001)基底表面凝结过程中微观结构演变的原子尺度模拟.  , 2015, 64(24): 243103. doi: 10.7498/aps.64.243103
    [11] 汪志刚, 黄娆, 文玉华. Pt-Au核-壳结构纳米粒子热稳定性的分子动力学研究.  , 2013, 62(12): 126101. doi: 10.7498/aps.62.126101
    [12] 汪志刚, 黄娆, 文玉华. Au-Pd共晶纳米粒子熔化行为的分子动力学研究.  , 2012, 61(16): 166102. doi: 10.7498/aps.61.166102
    [13] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究.  , 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [14] 田惠忱, 刘丽, 文玉华. 立方铂纳米粒子的形状变化与熔化特性的分子动力学研究.  , 2009, 58(6): 4080-4084. doi: 10.7498/aps.58.4080
    [15] 顾春元, 狄勤丰, 施利毅, 吴 非, 王文昌, 余祖斌. 纳米粒子构建表面的超疏水性能实验研究.  , 2008, 57(5): 3071-3076. doi: 10.7498/aps.57.3071
    [16] 段芳莉, 雒建斌, 温诗铸. 纳米粒子与单晶硅表面碰撞的反弹机理研究.  , 2005, 54(6): 2832-2837. doi: 10.7498/aps.54.2832
    [17] 陈志谦, 陈洪, 程南璞, 郑瑞伦. 纳米量级超导Al粒子在磁场中的Zeeman分裂.  , 2002, 51(3): 649-654. doi: 10.7498/aps.51.649
    [18] 许北雪, 吴锦雷, 侯士敏, 张西尧, 刘惟敏, 薛增泉, 吴全德. 镧与真空沉积银纳米粒子的金属间化合.  , 2002, 51(7): 1649-1653. doi: 10.7498/aps.51.1649
    [19] 许北雪, 吴锦雷, 邵庆益, 张兆祥, 刘惟敏, 薛增泉, 吴全德. 稀土镧对薄膜中银纳米粒子的细化作用.  , 2002, 51(5): 1103-1107. doi: 10.7498/aps.51.1103
    [20] 许北雪, 吴锦雷, 刘惟敏, 杨海, 邵庆益, 刘盛, 薛增泉, 吴全德. 稀土对金属纳米粒子-介质复合薄膜(Ag-BaO)光电发射性能的增强.  , 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
计量
  • 文章访问数:  6217
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-22
  • 修回日期:  2020-04-25
  • 上网日期:  2020-05-08
  • 刊出日期:  2020-07-20

/

返回文章
返回
Baidu
map