搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光强度依赖的阈下谐波产生机制

郭春祥 焦志宏 周效信 李鹏程

引用本文:
Citation:

激光强度依赖的阈下谐波产生机制

郭春祥, 焦志宏, 周效信, 李鹏程

Mechanism of laser intensity-dependent below-threshold harmonic generation

Guo Chun-Xiang, Jiao Zhi-Hong, Zhou Xiao-Xin, Li Peng-Cheng
PDF
HTML
导出引用
  • 利用广义伪谱方法精确数值求解了氢原子在强激光场中的三维含时薛定谔方程, 获得了强激光中氢原子的含时波函数, 利用时间依赖的偶极矩的傅里叶变换得到了高次谐波谱, 研究了氢原子在强激光场中发射低于电离阈值的谐波谱对激光强度的依赖性. 研究发现, 激光强度在低于电离阈值的谐波产生的通道选择的过程中扮演着重要角色, 主要有两种量子通道对阈下谐波的产生有贡献, 即广义的短轨道和长轨道, 其中长轨道对激光场强度比较敏感. 结合小波时频变换、经典轨道分析、以及强度依赖的量子通道选择分析, 本文阐明了其背后的物理机制.
    High-order-harmonic generation (HHG) is a fundamental atomic and molecular process in strong laser fields and plays a crucial role in the development of ultrafast science and technology. The essential features in HHG, such as the above-threshold harmonic plateau and cutoffs, can be well understood by the semiclassical three-step model. The HHG cutoff occurs approximately at the energy $3.17{U_{\rm p}} + {I_{\rm p}}$, where ${I_{\rm p}}$ is the atomic ionization potential, and ${U_{\rm p}}$ is the ponderomotive potential. In the past, most studies focused on the HHG above the ionization threshold, and the general pattern of the HHG spectrum can be qualitatively explained by means of the strong field approximation (SFA) and the quantum treatment of three-dimensional time-dependent Schr?dinger equation (TDSE). However, the SFA results in inadequate description for the process in the harmonic generation below the ionization threshold since it neglects the Coulomb potential and the detailed electronic structure of atoms. Recently, as a promising method to produce vacuum-ultraviolet frequency comb, the HHG in the near- and below-ionization threshold has been increased considerably. However, the dynamical origin of in these lower harmonics is less understood and largely unexplored. Here we perform an ab initio quantum study of the near- and below-threshold harmonic generation of hydrogen atom by means of the time-dependent generalized pseudospectral method. We study the intensity dependence of the harmonic spectra below the ionization threshold of hydrogen atom in the intense laser field. The high-order harmonic spectra are calculated by the Fourier transform of the atom induced dipole moment in the laser field. The below-threshold harmonic spectra yield is scaled as a function of the laser peak intensity. We find that the spectra yield in below-threshold harmonic generation (BTHG) dependents on the light intensity in the multiphoton ionization regime. And the laser intensity plays an important role in the channel selection process for BTHG. There are mainly two kinds of quantum channels to be responsible for the BTHG. Namely, the generalized short trajectories and the long trajectories, in which the long trajectories are more sensitive to the laser field intensity. Combining with wavelet time-frequency transform, semiclassical trajectories simulation, and quantum channel analysis associated with the laser intensity, the dynamical origin of the BTHG is uncovered.
      通信作者: 李鹏程, lipc@nwnu.edu.cn
    • 基金项目: 国家级-从头算研究强激光场中的分子低能高次谐波动力学过程(11674268)
      Corresponding author: Li Peng-Cheng, lipc@nwnu.edu.cn
    [1]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B. 4 595Google Scholar

    [2]

    Ferray M, L’Huillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 31Google Scholar

    [3]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar

    [4]

    Takahashi E J, Kanai T, Ishikawa K L, Nabekawa Y, Midorikawa K 2008 Phys. Rev. Lett. 101 253901Google Scholar

    [5]

    Budil K S, Salières P, L’Huillier A, Ditmire T, Perry M D 1993 Phys. Rev. A. 48 3437Google Scholar

    [6]

    Chini M, Zhao K, Chang Z H 2014 Nat. Photonics. 8 178Google Scholar

    [7]

    Wang L, Wang G L, Jiao Z H, Zhao S F, Zhou X X 2018 Chin. Phys. B. 27 073205Google Scholar

    [8]

    Li P C, Jiao Y X, Zhou X X, Chu S I 2016 Optics. Express. 24 14352Google Scholar

    [9]

    Frolov M V, Manakov N L, Sarantseva T S, Emelin M Y, Ryabikin M Y, Starace A F 2009 Phys. Rev. Lett. 102 243901Google Scholar

    [10]

    Dao L V, Dinh K B, Hannaford P 2013 Appl. Phys. Lett. 103 141115Google Scholar

    [11]

    Grazioli C, Callegari C, Ciavardini A, Coreno M, Frassetto F, Gauthier D, Golob D, Ivanov R, Kivimäki A, Mahieu B, Bučar B, Merhar M, Miotti P, Poletto L, Polo E, Ressel B, Spezzani C, De N G 2014 Rev. Sci. Instrum. 85 023104Google Scholar

    [12]

    Wang G L, Jin C, Le A T, Lin C D 2012 Phys. Rev. A. 86 015401Google Scholar

    [13]

    Dinh K B, Le H V, Hannaford P, Dao L V 2015 Appl. Opt. 54 5303Google Scholar

    [14]

    Xiong W H, Geng J W, Tang J Y, Peng L Y, Gong Q H 2014 Phys. Rev. Lett. 112 233001Google Scholar

    [15]

    Spott A, Becker A, Jaroń-Becker A 2015 Phys. Rev. A. 91 023402Google Scholar

    [16]

    Chini M, Wang X W, Cheng Y, Wang H, Wu Y, Cunningham E, Li P C, Hesla J A, Telnov D, Chu S I, Chang Z H 2014 Nat. Photonics. 10 1038

    [17]

    Xiong W H, Gong Q H, Peng L Y 2017 Phys. Rev. A. 96 023421Google Scholar

    [18]

    Heslar J, Chu S I 2017 Phys. Rev. A. 95 043414Google Scholar

    [19]

    Du L L, Wang G L, Li P C, Zhou X X 2018 Chin. Phys. B. 27 113201Google Scholar

    [20]

    Xiong W H, Peng L Y, Gong Q H 2017 J. Phys. B 50 032001Google Scholar

    [21]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [22]

    Lewenstein M, Balcou P, Ivanov M Y, L’Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [23]

    Yost D C, Schibli T R, Ye J, Tate J L, Hostetter J, Gaarde M B, Schafer K J 2009 Nat. Phys. 10 1038

    [24]

    Power E P, March A M, Catoire F, Sistrunk E, Krushelnick K, Agostini P, DiMauro L F 2010 Nat. Photonics. 4 352Google Scholar

    [25]

    Soifer H, Botheron P, Shafir D, Diner A, Raz O, Bruner B D, Mairesse Y, Pons B, Dudovich N 2010 Phys. Rev. Lett. 105 143904Google Scholar

    [26]

    Hostetter J A, Tate J L, Schafer K J, Gaarde M B 2010 Phys. Rev. A 82 023401Google Scholar

    [27]

    He L X, Lan P F, Zhai C Y, Li Y, Wang Z, Zhang Q B, Lu P X 2015 Phys. Rev. A. 91 023428Google Scholar

    [28]

    Beaulieu S, Camp S, Descamps D, Comby A, Wanie V, Petit S, Légaré F, Schafer K J, Gaarde M B, Catoire F, Mairesse Y 2016 Phys. Rev. Lett. 117 203001Google Scholar

    [29]

    Li P C, Sheu Y L, Laughlin C, Chu S I 2014 Phys. Rev. A. 90 041401Google Scholar

    [30]

    Tong X M, Chu S I 1997 Chem. Phys. 217 119Google Scholar

    [31]

    Balcou P, Dederichs A S, Gaarde M B, L’Huillier A 1999 J. Phys. B. 32 2973Google Scholar

    [32]

    Keldysh L V 1965 Sov. Phys. JETP. 20 1307

    [33]

    Chu X, Chu S I 2010 Phys. Rev. A. 64 013406Google Scholar

    [34]

    Li P C, Sheu Y L, Jooya H Z, Zhou X X, Chu S I 2016 Sci. Reports. 6 32763Google Scholar

  • 图 1  H原子产生的低于电离阈值的高次谐波谱 (a)波长为$800{\rm{~nm}}$, 强度为I = 6.0 × 1013 W/cm2 (黑色实线), I = 1.0 × 1014 W/cm2 (红色实线), 以及I = 1.4 × 1014 W/cm2 (绿色实线), 蓝色线表示H原子的电离能${I_{\rm p}}$; (b)同(a)图, 波长为$1600\;{\rm{ nm}}$的情况

    Fig. 1.  The HHG spectra produced by the hydrogen atom below the ionization threshold: (a) The wavelength is $800\;{\rm{ nm}}$, and the intensity is $I = 6.0 \times {10^{13}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$(black solid line), $I = 1.0 \times {10^{14}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$(red solid line), and$I = 1.4 \times {10^{14}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$(green solid line), the blue lines indicate the ionization energy Ip of hydrogen atom; (b) same as (a), the wavelength is $1600\;{\rm{ nm}}$ case.

    图 2  低于电离阈值的H5(黑色实线), H7(红线), 和H9(蓝色实线)的峰值强度随激光场强度的变化. 这里, 波长取为$800\;{\rm{ nm}}$, 其它激光场参数同图1(a). 箭头a, b, c, d分别表示在激光强度$I$$3.1 \times {10^{13}}{\rm{ }}$, $3.6 \times {10^{13}}$, $4.3 \times {10^{13}}$, 和$6.6 \times {10^{13}}$ ${\rm{W/c}}{{\rm{m}}^{\rm{2}}}$时H9的峰值强度

    Fig. 2.  The peak intensity of H5(black solid line), H7(red line), and H9 (blue solid line) below the ionization threshold as a function of the laser field intensity. Here, the wavelength is $800\;{\rm{ nm}}$, and the other laser field parameters used are the same as those in Fig. 1(a). The arrows a, b, c, and d indicate the peak intensity of H9 at the intensity $I$ of $3.1 \times {10^{13}}{\rm{ }}$, $3.6 \times {10^{13}}$, $4.3 \times {10^{13}}$${\rm{W/c}}{{\rm{m}}^{\rm{2}}}$, and 6.6 × $ {10^{13}}$ ${\rm{W/c}}{{\rm{m}}^{\rm{2}}}$, respectively.

    图 3  H9曲线上a, b, c, d四个特殊点处对应的电子动力学轨迹, 红色实线代表激光场, 蓝色实线表示电子的轨迹, 黑色虚线表示母核位置. 激光场参数同图2

    Fig. 3.  The time-dependent position of electrons at the given laser intensity shown in a, b, c, and d points in H9 curve. The red solid lines represent the laser field, the blue solid lines represent the trajectories of the electron, and the black dotted lines represent the position of the parent nucleus. The other laser field parameters used are the same as those in Fig. 2.

    图 4  波长为$800\;{\rm{ nm}}$激光脉冲下, 低于电离阈值谐波的时频分析 (a) $I = 3.1 \times {10^{13}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$; (b) $I = 3.6 \times {10^{13}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$; (c) $I = 4.3 \times {10^{13}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$; (d) $I = 6.6 \times {10^{13}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$

    Fig. 4.  Time-frequency analysis of below-threshold harmonic generation with a $800\;{\rm{ nm}}$ wavelength: (a) $I = 3.1 \times {10^{13}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$; (b) $I = 3.6 \times {10^{13}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$; (c) $I = 4.3 \times {10^{13}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$; (d) $I = 6.6 \times {10^{13}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$.

    图 5  波长为$800\;{\rm{ nm}}$, 强度为$I = 6.6 \times {10^{13}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$激光脉冲下, 低于电离阈值的时频分析 (a) H5; (b) H7; (c) H9

    Fig. 5.  Time-frequency analysis of below-threshold harmonic, in a $800\;{\rm{ nm}}$ laser wavelength with the intensity $I = 6.6 \times {10^{13}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$: (a) H5; (b) H7; (c) H9.

    图 6  低于电离阈值的谐波的量子通道分布对激光强度的依赖性(激光场参数同图2) (a) H5; (b) H7; (c) H9

    Fig. 6.  The distributions of the quantity channels as a function of the laser intensity for the below- threshold harmonics (The laser field parameters used are the same as those in Fig. 2.): (a) H5; (b) H7; (c) H9.

    Baidu
  • [1]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B. 4 595Google Scholar

    [2]

    Ferray M, L’Huillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 31Google Scholar

    [3]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar

    [4]

    Takahashi E J, Kanai T, Ishikawa K L, Nabekawa Y, Midorikawa K 2008 Phys. Rev. Lett. 101 253901Google Scholar

    [5]

    Budil K S, Salières P, L’Huillier A, Ditmire T, Perry M D 1993 Phys. Rev. A. 48 3437Google Scholar

    [6]

    Chini M, Zhao K, Chang Z H 2014 Nat. Photonics. 8 178Google Scholar

    [7]

    Wang L, Wang G L, Jiao Z H, Zhao S F, Zhou X X 2018 Chin. Phys. B. 27 073205Google Scholar

    [8]

    Li P C, Jiao Y X, Zhou X X, Chu S I 2016 Optics. Express. 24 14352Google Scholar

    [9]

    Frolov M V, Manakov N L, Sarantseva T S, Emelin M Y, Ryabikin M Y, Starace A F 2009 Phys. Rev. Lett. 102 243901Google Scholar

    [10]

    Dao L V, Dinh K B, Hannaford P 2013 Appl. Phys. Lett. 103 141115Google Scholar

    [11]

    Grazioli C, Callegari C, Ciavardini A, Coreno M, Frassetto F, Gauthier D, Golob D, Ivanov R, Kivimäki A, Mahieu B, Bučar B, Merhar M, Miotti P, Poletto L, Polo E, Ressel B, Spezzani C, De N G 2014 Rev. Sci. Instrum. 85 023104Google Scholar

    [12]

    Wang G L, Jin C, Le A T, Lin C D 2012 Phys. Rev. A. 86 015401Google Scholar

    [13]

    Dinh K B, Le H V, Hannaford P, Dao L V 2015 Appl. Opt. 54 5303Google Scholar

    [14]

    Xiong W H, Geng J W, Tang J Y, Peng L Y, Gong Q H 2014 Phys. Rev. Lett. 112 233001Google Scholar

    [15]

    Spott A, Becker A, Jaroń-Becker A 2015 Phys. Rev. A. 91 023402Google Scholar

    [16]

    Chini M, Wang X W, Cheng Y, Wang H, Wu Y, Cunningham E, Li P C, Hesla J A, Telnov D, Chu S I, Chang Z H 2014 Nat. Photonics. 10 1038

    [17]

    Xiong W H, Gong Q H, Peng L Y 2017 Phys. Rev. A. 96 023421Google Scholar

    [18]

    Heslar J, Chu S I 2017 Phys. Rev. A. 95 043414Google Scholar

    [19]

    Du L L, Wang G L, Li P C, Zhou X X 2018 Chin. Phys. B. 27 113201Google Scholar

    [20]

    Xiong W H, Peng L Y, Gong Q H 2017 J. Phys. B 50 032001Google Scholar

    [21]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [22]

    Lewenstein M, Balcou P, Ivanov M Y, L’Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [23]

    Yost D C, Schibli T R, Ye J, Tate J L, Hostetter J, Gaarde M B, Schafer K J 2009 Nat. Phys. 10 1038

    [24]

    Power E P, March A M, Catoire F, Sistrunk E, Krushelnick K, Agostini P, DiMauro L F 2010 Nat. Photonics. 4 352Google Scholar

    [25]

    Soifer H, Botheron P, Shafir D, Diner A, Raz O, Bruner B D, Mairesse Y, Pons B, Dudovich N 2010 Phys. Rev. Lett. 105 143904Google Scholar

    [26]

    Hostetter J A, Tate J L, Schafer K J, Gaarde M B 2010 Phys. Rev. A 82 023401Google Scholar

    [27]

    He L X, Lan P F, Zhai C Y, Li Y, Wang Z, Zhang Q B, Lu P X 2015 Phys. Rev. A. 91 023428Google Scholar

    [28]

    Beaulieu S, Camp S, Descamps D, Comby A, Wanie V, Petit S, Légaré F, Schafer K J, Gaarde M B, Catoire F, Mairesse Y 2016 Phys. Rev. Lett. 117 203001Google Scholar

    [29]

    Li P C, Sheu Y L, Laughlin C, Chu S I 2014 Phys. Rev. A. 90 041401Google Scholar

    [30]

    Tong X M, Chu S I 1997 Chem. Phys. 217 119Google Scholar

    [31]

    Balcou P, Dederichs A S, Gaarde M B, L’Huillier A 1999 J. Phys. B. 32 2973Google Scholar

    [32]

    Keldysh L V 1965 Sov. Phys. JETP. 20 1307

    [33]

    Chu X, Chu S I 2010 Phys. Rev. A. 64 013406Google Scholar

    [34]

    Li P C, Sheu Y L, Jooya H Z, Zhou X X, Chu S I 2016 Sci. Reports. 6 32763Google Scholar

  • [1] 魏博宁, 焦志宏, 周效信. 非对称波形激光驱动的氢原子高次谐波频移及控制.  , 2022, 71(7): 073201. doi: 10.7498/aps.71.20212146
    [2] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究.  , 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [3] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展.  , 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [4] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖.  , 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [5] 蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰. 相对论圆偏振激光与固体靶作用产生高次谐波.  , 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [6] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强.  , 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [7] 管仲, 李伟, 王国利, 周效信. 激光驱动晶体发射高次谐波的特性研究.  , 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [8] 金发成, 王兵兵. 频域图像下的强场非序列电离过程.  , 2016, 65(22): 224205. doi: 10.7498/aps.65.224205
    [9] 肖相如, 王慕雪, 黎敏, 耿基伟, 刘运全, 彭良友. 强激光场中原子单电离的半经典方法.  , 2016, 65(22): 220203. doi: 10.7498/aps.65.220203
    [10] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰. 不同原子在飞秒强激光场中的里德堡态激发和双电离.  , 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [11] 张頔玉, 李庆仪, 郭福明, 杨玉军. 原子多光子激发对电离阈值附近谐波发射的影响.  , 2016, 65(22): 223202. doi: 10.7498/aps.65.223202
    [12] 李小刚, 李芳, 何志聪. 双色场驱动下高次谐波的径向量子轨道干涉.  , 2013, 62(8): 087201. doi: 10.7498/aps.62.087201
    [13] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲.  , 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [14] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响.  , 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [15] 郭中华, 周效信. 基态分子波函数对N2分子在强激光场中产生高次谐波的影响.  , 2008, 57(3): 1616-1621. doi: 10.7498/aps.57.1616
    [16] 赵松峰, 周效信, 金 成. 强激光场中模型氢原子和真实氢原子的高次谐波与电离特性研究.  , 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [17] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移.  , 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [18] 李鹏程, 周效信, 董晨钟, 赵松峰. 强激光场中长程势与短程势原子产生高次谐波与电离特性研究.  , 2004, 53(3): 750-755. doi: 10.7498/aps.53.750
    [19] 周效信, 李白文. 强激光场中原子的束缚态和连续态对高次谐波的影响.  , 2001, 50(10): 1902-1906. doi: 10.7498/aps.50.1902
    [20] 郑丽萍, 邱锡钧. 光强、频率对强激光场中的多原子分子离子增强电离行为的影响.  , 2000, 49(10): 1965-1968. doi: 10.7498/aps.49.1965
计量
  • 文章访问数:  9712
  • PDF下载量:  685
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-12
  • 修回日期:  2020-01-08
  • 刊出日期:  2020-04-05

/

返回文章
返回
Baidu
map