搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空气中单丝和丝阵电爆炸特性的比较

李琛 韩若愚 刘毅 张晨阳 欧阳吉庭 丁卫东

引用本文:
Citation:

空气中单丝和丝阵电爆炸特性的比较

李琛, 韩若愚, 刘毅, 张晨阳, 欧阳吉庭, 丁卫东

Comparison of electrical wire explosion characteristics of single wire and wire array in air

Li Chen, Han Ruo-Yu, Liu Yi, Zhang Chen-Yang, Ouyang Ji-Ting, Ding Wei-Dong
PDF
HTML
导出引用
  • 本文开展了500 J储能下、大气空气介质中微秒脉冲电流源驱动平面型铜丝阵负载电爆炸放电特性研究, 并与铜单丝电爆炸进行了比较. 实验中保持铜电极间距2 cm不变, 选择2—16根直径100 μm的铜丝组成平面型铜丝阵, 同时选择直径50—400 μm的单根铜丝作为对照, 对电爆炸过程中负载电压、回路电流与光辐射强度进行测量, 计算得到电功率、沉积能量等参数, 研究质量变化对铜导体电爆炸过程的影响规律; 特别地, 对于相同质量下单丝与丝阵负载情况进行比较. 实验结果表明, 随着质量增加, 单丝电爆炸气化与电离过程变缓, 宏观表现为电压峰值时刻延后、半高宽增大(约0.07 μs增至约0.64 μs); 与之不同, 虽然丝阵电爆炸时刻随质量增加延后, 但气化与电离持续时间变化不明显, 电压峰半高宽稳定在0.11 ± 0.01 μs, 且击穿发生前丝阵负载沉积能量低于同质量单丝负载. 光辐射强度方面, 丝阵电爆炸光辐射强度比三次同质量下单丝电爆炸分别强约28%, 49%和52%. 造成单丝与丝阵电爆炸过程差异的原因可能有两个方面: 一是比表面积的差异使得细丝的相变过程更加迅速, 表现为相同质量下细丝丝阵比粗单丝爆炸过程快; 二是电热/磁流体不稳定性在丝阵与单丝中发展程度不同, 表现为光强-时间曲线的差异.
    In this paper, discharge characteristics of a planar copper wire array explosion driven by a microsecond pulsed current source (500 J stored energy) in atmospheric air medium were studied. Meanwhile, controlled experiments were performed with single wire cases. With a 2 cm distance between electrodes, 2-16 copper wires with a diameter of 100 μm were selected to form planar copper wire arrays, and single copper wires with diameter of 50-400 μm were selected for comparisons. Load voltage, circuit current and light radiation intensity were measured. Electric power and deposited energy were calculated. The experimental results show that for the single wire case, with the increase of mass (diameter), the process of vaporization and ionization become slower, manifested as a delay of the voltage peak and an increase of the full width half maximum (FWHM) of the voltage pulse from 0.07 μs to 0.64 μs. In contrast, although the explosion time of wire array load was delayed with the increase of mass, the duration of vaporization and ionization did not change significantly with a FWHM of 0.11 ± 0.01 μs. In addition, the deposited energy of wire array load before breakdown was lower than that of single wire load with the same mass. As for the optical radiation intensity, under three cases with the same mass, the peak intensity of wire array explosion is about 28%, 49% and 52% higher than that of single wire explosion. There may be two reasons which cause the difference between the single wire load and wire array load. First, the larger specific surface area of the wire array load makes faster phase transitions. Second, the development of thermal or magnetohydrodynamics for the two kinds of loads was different, which should be responsible for the differences in energy deposition and optical emission.
      通信作者: 韩若愚, r.han@bit.edu.cn
    • 基金项目: 国家级-国家自然科学基金(51907007)
      Corresponding author: Han Ruo-Yu, r.han@bit.edu.cn
    [1]

    Wu J, Li X W, Li M, Li Y, Qiu A C 2017 J. Phys. D: Appl. Phys. 50 403002Google Scholar

    [2]

    韩若愚, 吴佳玮, 丁卫东, 周海滨, 邱爱慈, 张永民 2019 中国电机工程学报 39 0258Google Scholar

    Han R Y, Wu J W, Ding W D, Zhou H B, Qiu A C, Zhang Y M 2019 Proc. Chin. Soc. Elect. Eng. 39 0258Google Scholar

    [3]

    张永民, 姚伟博, 邱爱慈, 汤俊萍, 王宇, 呼义翔 2019 高电压技术 45 2668Google Scholar

    Zhang Y M, Yao W B, Qiu A C, Tang J P, Hu Y X 2019 High Voltage Engin. 45 2668Google Scholar

    [4]

    邱爱慈, 蒯斌, 曾正中, 王文生, 邱孟通, 王亮平, 从培天, 吕敏 2006 55 5917Google Scholar

    Qiu A C, Kuai B, Zeng Z Z, Wang W S, Qiu M T, Wang L P, Cong P T, Lv M 2006 Acta Phys. Sin. 55 5917Google Scholar

    [5]

    Haines M G 2011 Plasma Phys. Controlled Fusion 53 093001Google Scholar

    [6]

    但加坤, 任晓东, 黄显宾, 张思群, 周少彤, 段书超, 欧阳凯, 蔡红春, 卫兵, 计策, 何安, 夏明鹤, 丰树平, 王勐, 谢卫平 2013 62 245201Google Scholar

    Dan J K, Ren X D, Huang X B, Zhang S Q, Zhou S T, Duan S C, Ouyang K, Cai H C, Wei B, Ji C, He A, Xia M H, Feng S P, Wang M, Xie W P 2013 Acta Phys. Sin. 62 245201Google Scholar

    [7]

    吴坚 2012 博士学位论文(北京: 清华大学)

    Wu J 2012 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [8]

    李业勋 2002 硕士学位论文(绵阳: 中国工程物理研究院)

    Li Y X 2002 M. S. Thesis (Mianyang: China Academy Of Engineering Physics) (in Chinese)

    [9]

    毛志国 2009 博士学位论文(北京: 清华大学)

    Mao Z G 2009 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [10]

    Kotov Y A 2003 J. Nanopart. Res. 5 539Google Scholar

    [11]

    Li X W, Chao Y C, Wu J, Han R Y, Zhou H B, Qiu A C 2015 J. Appl. Phys. 118 023301Google Scholar

    [12]

    Han R Y, Wu J W, Zhou H B, Zhang Y M, Qiu A C 2019 J. Appl. Phys. 125 153302Google Scholar

    [13]

    Han R Y, Zhou H B, Wu J W, Thomas C, Ren H, Wu J, Zhang Y M, Qiu A C 2017 Phys. Plasmas 24 063511Google Scholar

    [14]

    Li L X, Zou X B, Wang X X 2018 Phys. Plasmas 25 053502Google Scholar

    [15]

    Sarkisov GS, Sasorov PV, Struve KW, McDaniel D H 2004 J. Appl. Phys. 96 1674Google Scholar

    [16]

    Grinenko A, Krasik YE, Efimov S, Fedotov A, Gurovich V T 2006 Phys. Plasmas 13 042701Google Scholar

    [17]

    Qian D, Li L X, Zou X B, Wang X X 2019 IEEE Puled Powerand Plasma Science Conference Orlando, USA, June 23–28, 2019, P6 E2

    [18]

    Bland S N, Krasik Y E, Yanuka D, Gardner R, MacDonald J, Virozub A, Efimov S, Gleizer S, Chaturvedi N 2017 Phys. Plasmas 24 082702Google Scholar

    [19]

    Krasik Y E, Efimov S, Sheftman D, Fedotov-Gefen A, Antonov O, Shafer D, Yanuka D, Nitishinskiy M, Kozlov M, Gilburd L, Toker G, Gleizer S 2016 IEEE Trans. Plasma Sci. 44 412Google Scholar

    [20]

    张永民, 安世岗, 陈殿赋, 师庆民, 张增辉, 赵有志, 罗伙根, 邱爱慈, 秦勇 2019 煤矿安全 50 1003Google Scholar

    Zhang Y M, An S G, Chen D B, ShiQ M, Zhang Z H, Zhao Y Z, Luo H G, Qiu A C, Qin Y 2019 Safety. In. Coal. Mines. 50 1003Google Scholar

    [21]

    薛乐星, 潘文, 冯博, 封雪松, 赵娟, 冯晓军 2019 火炸药学报 1 6

    Xue L X, Pan W, Feng B, Feng X S, Zhao J, Feng X J 2019 Chin. J. Expl. Propell. 1 6

    [22]

    张金海, 邱爱慈, 王亮平, 李沫, 孙铁平, 李阳, 从培天, 盛亮 2019 原子能科学技术 53 1509Google Scholar

    Zhang J H, Qiu A C, Wang L P, Li M, SunT P, Li Y, Cong P T, Sheng L 2019 At. Energ. Sci. Technol. 53 1509Google Scholar

    [23]

    Yanuka D, Theocharous S, Bland S N 2019 Phys. Plasmas 26 122704Google Scholar

    [24]

    Efimov S, Fedotov A, Gleizer S, Gurovich V T, Bazalitski G, Krasik Y E 2008 Phys. Plasmas 15 112703Google Scholar

    [25]

    Fedotov-Gefen A, Efimov S, Gilburd L, Bazalitski G, Gurovich V T, KrasikY E 2011 Phys. Plasmas 18 062701Google Scholar

    [26]

    Antonov O, Efimov S, Yanuka D, Kozlov M, Gurovich V T, Krasik Y E 2013 Appl. Phys. Lett. 102 124104Google Scholar

    [27]

    盛亮, 彭博栋, 袁媛, 张美, 李奎念, 张信军, 赵晨, 李沫 2014 23 235205Google Scholar

    Sheng L, Peng B D, Yuan Y, Zhang M, Li K N, Zhang X J, Zhao C, Li M 2014 Acta Phys. Sin. 23 235205Google Scholar

    [28]

    Rososhek A, Efimov S, Virozub A, Maler D, Krasik Y E 2019 Appl. Phys. Lett. 115 074101Google Scholar

    [29]

    Efimov S, Gurovich V T, Bazalitski G, Fedotov A, Krasika Y E 2009 J. Appl. Phys. 106 073308Google Scholar

    [30]

    周海滨 2016 博士学位论文(西安: 西安交通大学)

    Zhou H B 2016 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)

    [31]

    Tucker T J, Toth R P 1975 Sandia Rept. 75 0041

    [32]

    Sarkisov G, Struve KW, McDaniel D H 2005 Phys. Plasmas 12 052702Google Scholar

    [33]

    Tkachenko SI, Kuskova NI 1999 J. Phys.-Condes. Matter. 11 2223Google Scholar

    [34]

    Kuskova N I 1998 Tech. Phys. Lett. 24 559Google Scholar

    [35]

    Kuskova N. I, Tkachenko SI, Koval S V 1997 J. Phys.-Condes. Matter. 9 6175Google Scholar

    [36]

    Yao W B, Zhou H B, Han R Y, Zhang Y M, Zhao Z, Xu Q F, Qiu A C 2019 Phys. Plasmas 26 093502Google Scholar

  • 图 1  实验装置图 (a)电路示意图; (b)丝阵负载实物图

    Fig. 1.  Experimentalsetup: (a) Circuit diagram; (b) wirearrayload.

    图 2  金属丝电爆炸放电参数与阶段划分

    Fig. 2.  Parameters and stages of explosive discharge of wire.

    图 3  铜单丝不同质量(直径)下参数随时间的变化规律 (a) 电压; (b) 电流; (c) 电功率; (d) 沉积能量; (e) 电阻

    Fig. 3.  Parameter variation of copper single wire with time varying under different mass (diameter): (a) Voltage; (b) electric current; (c) power; (d) deposited energy; (e) resistance.

    图 4  铜丝阵不同质量(根数)下参数随时间变化规律 (a) 电压; (b) 电流; (c) 电功率; (d) 沉积能量; (e) 电阻

    Fig. 4.  Parameter variation of copper wire array with time varying under different mass (number of wires): (a) Voltage; (b) electric current; (c) power; (d) deposited energy; (e) resistance.

    图 5  铜单丝与丝阵负载电流、功率、光辐、及光辐射一阶导数波形图 (a) 铜单丝200 μm; (b) 铜丝阵4根

    Fig. 5.  Waveforms of current and light radiation of copper single wire and wire array: (a) Copper singlewire with 200 μm diameter; (b) copper wire array with 4 wires.

    图 6  铜单丝与丝阵负载光辐射随质量变化规律图 (a) 铜单丝负载; (b) 铜丝阵负载

    Fig. 6.  Light radiationvariation of copper single wire and wire array under different mass: (a) Copper single wire load; (b) copper wire array load

    图 7  光辐射信号采集示意图

    Fig. 7.  Acquisition process of light radiation.

    图 8  相同质量时单丝负载与丝阵负载的参数比较 (a)电压; (b) 电流; (c)电功率; (d)光辐射; (e) 电阻

    Fig. 8.  Parameter comparison of copper single wire and wire array with the same mass: (a) Voltage; (b) electric current; (c) power; (d) light radiation; (e) resistance.

    图 9  单丝负载与丝阵负载沉积能量随质量变化规律 (a) 电压崩前沉积能量; (b) 电流第一个过零点前沉积能量

    Fig. 9.  Deposited energy of copper single wire and wire array with mass varying: (a) Deposited energy before voltage collapse; (b) deposited energy before the current first crosses zero.

    表 1  铜单丝不同质量(直径)下的参数比较

    Table 1.  Parameter comparison of copper single wire under different mass(diameter).

    参数种类铜单丝直径/μm
    50100150200300400
    电压峰值/kV46.2 ± 2.742.1 ± 1.531.7 ± 1.928.9 ± 0.724.1 ± 1.17.1 ± 0.4
    电压峰值出现时间/μs0.26 ± 0.010.77 ± 0.061.30 ± 0.031.93 ± 0.023.40 ± 0.046.45 ± 0.04
    电压峰半高宽/μs0.07 ± 0.010.12 ± 0.010.14 ± 0.010.17 ± 0.010.28 ± 0.010.64 ± 0.02
    电压峰前沉积能量/J2.7 ± 0.213.9 ± 0.534.7 ± 2.361.6 ± 3.4115.8 ± 4.1123.8 ± 5.8
    电流第一个过零点前沉积能量/J40.2 ± 1.470.3 ± 3.3118.6 ± 4.9159.2 ± 5.1217.5 ± 8.4138.9 ± 4.6
    初始电阻/mΩ178.344.619.811.14.92.8
    开始气化所需能量/J0.52.04.58.018.032.2
    完全气化所需能量/J2.28.619.434.577.2137.9
    下载: 导出CSV

    表 2  铜丝阵不同质量(根数)下的参数比较

    Table 2.  Parameter comparison of copper wire array under different mass (number of wires).

    参数种类铜丝阵根数/根
    2468910121416
    电压峰值/kV41.3±2.634.2±1.232.7±1.132.6±0.628.3±1.022.8±0.821.1±1.121.2±0.47.9±0.2
    电压峰值出现时间/μs1.06±0.011.61±0.052.20±0.012.72±0.082.96±0.083.20±0.043.84±0.024.32±0.215.01±0.36
    电压峰半高宽/μs0.10±0.010.09±0.020.11±0.010.11±0.0080.11±0.010.12±0.0090.11±0.010.12±0.010.27±0.03
    电压峰前沉积能量/J24.2±1.639.1±2.758.9±1.772.9±6.583.6±1.582.3±3.686.7±2.097.7±3.695.3±3.3
    电流第一个过零点
    前沉积能量/J
    89.2±3.6122.1±4.2142.3±3.3150.5±9.1152.0±7.3155.7±3.5151.5±5.6148.2±6.2130.0±5.7
    初始电阻/mΩ22.311.17.45.64.94.53.73.22.8
    开始气化所需能量/J4.08.012.016.018.020.024.028.032.0
    完全气化所需能量/J17.234.451.668.877.486.0103.2120.4137.6
    下载: 导出CSV

    表 3  质量相同时单丝负载与丝阵负载沉积能量数值表

    Table 3.  The value of deposited energy of copper single wire and wire array with the same mass.

    参数种类5.59 mg12.51 mg22.35 mg
    200 μm单丝丝阵4根300 μm单丝丝阵9根400 μm单丝丝阵16根
    电压崩前沉积能量/J61.6 ± 3.439.1 ± 2.7115.8 ± 4.183.6 ± 1.5123.8 ± 5.895.3 ± 3.3
    电压崩前每个原子沉积能量/ eV·atom7.2 ± 0.44.6 ± 0.36.0 ± 0.24.4 ± 0.13.6 ± 0.22.8 ± 0.1
    电流第一个过零点前沉积能量/J159.2 ± 5.1122.1 ± 4.2217.5 ± 8.4152.0 ± 7.3138.9 ± 4.6130.0 ± 5.7
    电流第一个过零点前每个原子沉积能量/eV·atom–118.7 ± 0.614.3 ± 0.511.2 ± 0.47.9 ± 0.44.1 ± 0.13.8 ± 0.2
    下载: 导出CSV
    Baidu
  • [1]

    Wu J, Li X W, Li M, Li Y, Qiu A C 2017 J. Phys. D: Appl. Phys. 50 403002Google Scholar

    [2]

    韩若愚, 吴佳玮, 丁卫东, 周海滨, 邱爱慈, 张永民 2019 中国电机工程学报 39 0258Google Scholar

    Han R Y, Wu J W, Ding W D, Zhou H B, Qiu A C, Zhang Y M 2019 Proc. Chin. Soc. Elect. Eng. 39 0258Google Scholar

    [3]

    张永民, 姚伟博, 邱爱慈, 汤俊萍, 王宇, 呼义翔 2019 高电压技术 45 2668Google Scholar

    Zhang Y M, Yao W B, Qiu A C, Tang J P, Hu Y X 2019 High Voltage Engin. 45 2668Google Scholar

    [4]

    邱爱慈, 蒯斌, 曾正中, 王文生, 邱孟通, 王亮平, 从培天, 吕敏 2006 55 5917Google Scholar

    Qiu A C, Kuai B, Zeng Z Z, Wang W S, Qiu M T, Wang L P, Cong P T, Lv M 2006 Acta Phys. Sin. 55 5917Google Scholar

    [5]

    Haines M G 2011 Plasma Phys. Controlled Fusion 53 093001Google Scholar

    [6]

    但加坤, 任晓东, 黄显宾, 张思群, 周少彤, 段书超, 欧阳凯, 蔡红春, 卫兵, 计策, 何安, 夏明鹤, 丰树平, 王勐, 谢卫平 2013 62 245201Google Scholar

    Dan J K, Ren X D, Huang X B, Zhang S Q, Zhou S T, Duan S C, Ouyang K, Cai H C, Wei B, Ji C, He A, Xia M H, Feng S P, Wang M, Xie W P 2013 Acta Phys. Sin. 62 245201Google Scholar

    [7]

    吴坚 2012 博士学位论文(北京: 清华大学)

    Wu J 2012 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [8]

    李业勋 2002 硕士学位论文(绵阳: 中国工程物理研究院)

    Li Y X 2002 M. S. Thesis (Mianyang: China Academy Of Engineering Physics) (in Chinese)

    [9]

    毛志国 2009 博士学位论文(北京: 清华大学)

    Mao Z G 2009 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [10]

    Kotov Y A 2003 J. Nanopart. Res. 5 539Google Scholar

    [11]

    Li X W, Chao Y C, Wu J, Han R Y, Zhou H B, Qiu A C 2015 J. Appl. Phys. 118 023301Google Scholar

    [12]

    Han R Y, Wu J W, Zhou H B, Zhang Y M, Qiu A C 2019 J. Appl. Phys. 125 153302Google Scholar

    [13]

    Han R Y, Zhou H B, Wu J W, Thomas C, Ren H, Wu J, Zhang Y M, Qiu A C 2017 Phys. Plasmas 24 063511Google Scholar

    [14]

    Li L X, Zou X B, Wang X X 2018 Phys. Plasmas 25 053502Google Scholar

    [15]

    Sarkisov GS, Sasorov PV, Struve KW, McDaniel D H 2004 J. Appl. Phys. 96 1674Google Scholar

    [16]

    Grinenko A, Krasik YE, Efimov S, Fedotov A, Gurovich V T 2006 Phys. Plasmas 13 042701Google Scholar

    [17]

    Qian D, Li L X, Zou X B, Wang X X 2019 IEEE Puled Powerand Plasma Science Conference Orlando, USA, June 23–28, 2019, P6 E2

    [18]

    Bland S N, Krasik Y E, Yanuka D, Gardner R, MacDonald J, Virozub A, Efimov S, Gleizer S, Chaturvedi N 2017 Phys. Plasmas 24 082702Google Scholar

    [19]

    Krasik Y E, Efimov S, Sheftman D, Fedotov-Gefen A, Antonov O, Shafer D, Yanuka D, Nitishinskiy M, Kozlov M, Gilburd L, Toker G, Gleizer S 2016 IEEE Trans. Plasma Sci. 44 412Google Scholar

    [20]

    张永民, 安世岗, 陈殿赋, 师庆民, 张增辉, 赵有志, 罗伙根, 邱爱慈, 秦勇 2019 煤矿安全 50 1003Google Scholar

    Zhang Y M, An S G, Chen D B, ShiQ M, Zhang Z H, Zhao Y Z, Luo H G, Qiu A C, Qin Y 2019 Safety. In. Coal. Mines. 50 1003Google Scholar

    [21]

    薛乐星, 潘文, 冯博, 封雪松, 赵娟, 冯晓军 2019 火炸药学报 1 6

    Xue L X, Pan W, Feng B, Feng X S, Zhao J, Feng X J 2019 Chin. J. Expl. Propell. 1 6

    [22]

    张金海, 邱爱慈, 王亮平, 李沫, 孙铁平, 李阳, 从培天, 盛亮 2019 原子能科学技术 53 1509Google Scholar

    Zhang J H, Qiu A C, Wang L P, Li M, SunT P, Li Y, Cong P T, Sheng L 2019 At. Energ. Sci. Technol. 53 1509Google Scholar

    [23]

    Yanuka D, Theocharous S, Bland S N 2019 Phys. Plasmas 26 122704Google Scholar

    [24]

    Efimov S, Fedotov A, Gleizer S, Gurovich V T, Bazalitski G, Krasik Y E 2008 Phys. Plasmas 15 112703Google Scholar

    [25]

    Fedotov-Gefen A, Efimov S, Gilburd L, Bazalitski G, Gurovich V T, KrasikY E 2011 Phys. Plasmas 18 062701Google Scholar

    [26]

    Antonov O, Efimov S, Yanuka D, Kozlov M, Gurovich V T, Krasik Y E 2013 Appl. Phys. Lett. 102 124104Google Scholar

    [27]

    盛亮, 彭博栋, 袁媛, 张美, 李奎念, 张信军, 赵晨, 李沫 2014 23 235205Google Scholar

    Sheng L, Peng B D, Yuan Y, Zhang M, Li K N, Zhang X J, Zhao C, Li M 2014 Acta Phys. Sin. 23 235205Google Scholar

    [28]

    Rososhek A, Efimov S, Virozub A, Maler D, Krasik Y E 2019 Appl. Phys. Lett. 115 074101Google Scholar

    [29]

    Efimov S, Gurovich V T, Bazalitski G, Fedotov A, Krasika Y E 2009 J. Appl. Phys. 106 073308Google Scholar

    [30]

    周海滨 2016 博士学位论文(西安: 西安交通大学)

    Zhou H B 2016 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)

    [31]

    Tucker T J, Toth R P 1975 Sandia Rept. 75 0041

    [32]

    Sarkisov G, Struve KW, McDaniel D H 2005 Phys. Plasmas 12 052702Google Scholar

    [33]

    Tkachenko SI, Kuskova NI 1999 J. Phys.-Condes. Matter. 11 2223Google Scholar

    [34]

    Kuskova N I 1998 Tech. Phys. Lett. 24 559Google Scholar

    [35]

    Kuskova N. I, Tkachenko SI, Koval S V 1997 J. Phys.-Condes. Matter. 9 6175Google Scholar

    [36]

    Yao W B, Zhou H B, Han R Y, Zhang Y M, Zhao Z, Xu Q F, Qiu A C 2019 Phys. Plasmas 26 093502Google Scholar

  • [1] 李文秋, 唐彦娜, 刘雅琳, 马维聪, 王刚. 各向同性等离子体覆盖金属天线辐射增强现象.  , 2023, 72(13): 135202. doi: 10.7498/aps.72.20230101
    [2] 赵鑫, 杨晓虎, 张国博, 马燕云, 刘彦鹏, 郁明阳. 高功率激光辐照平面靶后辐射冷却效应对等离子体成丝的影响.  , 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [3] 刘永棠, 盛亮, 李阳, 张金海, 欧阳晓平. 反场构型平面薄膜电爆炸等离子体电流通道.  , 2022, 71(3): 035205. doi: 10.7498/aps.71.20211495
    [4] 刘永棠, 盛亮, 李阳, 张金海, 欧阳晓平. 反场构型平面薄膜电爆炸等离子体电流通道研究.  , 2021, (): . doi: 10.7498/aps.70.20211495
    [5] 王坤, 史宗谦, 石元杰, 赵志刚, 张董. 真空及空气中金属丝电爆炸特性研究.  , 2017, 66(18): 185203. doi: 10.7498/aps.66.185203
    [6] 傅涛, 欧阳征标. 等离子体填充金属光子晶体Cherenkov辐射源模拟研究.  , 2016, 65(7): 074208. doi: 10.7498/aps.65.074208
    [7] 彭楚才, 王金相, 刘林林. 介质环境对铜丝电爆炸制备纳米粉体的影响.  , 2015, 64(7): 075203. doi: 10.7498/aps.64.075203
    [8] 王平, 胡德骄, 肖钰斐, 庞霖. 金属光栅对表面等离子体波的辐射抑制研究.  , 2015, 64(8): 087301. doi: 10.7498/aps.64.087301
    [9] 王海艳, 窦秀明, 倪海桥, 牛智川, 孙宝权. 等离子体增强InAs单量子点荧光辐射的研究.  , 2014, 63(2): 027801. doi: 10.7498/aps.63.027801
    [10] 石桓通, 邹晓兵, 赵屾, 朱鑫磊, 王新新. 并联金属丝提高电爆炸丝沉积能量的数值模拟.  , 2014, 63(14): 145206. doi: 10.7498/aps.63.145206
    [11] 郭凯敏, 高 勋, 郝作强, 鲁毅, 孙长凯, 林景全. 空气中飞秒激光等离子体荧光辐射光谱研究.  , 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [12] 邹文康, 陈林, 周良骥, 王勐, 杨礼兵, 谢卫平, 邓建军. Z箍缩驱动器与丝阵负载耦合特性研究.  , 2011, 60(11): 115204. doi: 10.7498/aps.60.115204
    [13] 盛亮, 王亮平, 李阳, 彭博栋, 张美, 吴坚, 王培伟, 魏福利, 袁媛. 平面丝阵负载Z箍缩内爆动力学一维图像诊断.  , 2011, 60(10): 105205. doi: 10.7498/aps.60.105205
    [14] 王真, 李正宏, 徐荣昆, 杨建伦, 丁宁, 许泽平, 郭存, 宁成, 宁家敏, 蒋世伦, 章法强, 夏广新, 李林波, 叶凡, 秦义, 薛飞彪, 陈进川. 1—4 MA电流驱动的丝阵X光辐射优化的实验研究.  , 2011, 60(2): 025209. doi: 10.7498/aps.60.025209
    [15] 黄俊, 孙顺凯, 肖德龙, 丁宁, 宁成, 张扬, 薛创. 丝阵Z箍缩早期消融等离子体动力学的二维数值模拟研究.  , 2010, 59(9): 6351-6361. doi: 10.7498/aps.59.6351
    [16] 夏广新, 章法强, 许泽平, 徐荣昆, 陈进川, 宁家敏. 单层丝阵负载Z箍缩内爆辐射特性研究.  , 2010, 59(1): 97-102. doi: 10.7498/aps.59.97
    [17] 王亮平, 韩娟娟, 吴坚, 郭宁, 吴刚, 李岩, 邱爱慈. 基于单丝行为的平面型丝阵Z箍缩模拟.  , 2010, 59(12): 8685-8691. doi: 10.7498/aps.59.8685
    [18] 邱爱慈, 蒯 斌, 曾正中, 王文生, 邱孟通, 王亮平, 丛培天, 吕 敏. “强光一号”钨丝阵Z箍缩等离子体辐射特性研究.  , 2006, 55(11): 5917-5922. doi: 10.7498/aps.55.5917
    [19] 丁 宁, 杨震华, 宁 成. Z箍缩等离子体内爆实验金属丝阵负载优化设计分析.  , 2004, 53(3): 808-817. doi: 10.7498/aps.53.808
    [20] 常铁强. 等离子体中的轫致辐射.  , 1982, 31(9): 1152-1165. doi: 10.7498/aps.31.1152
计量
  • 文章访问数:  6725
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-27
  • 修回日期:  2020-01-15
  • 刊出日期:  2020-04-05

/

返回文章
返回
Baidu
map