-
本文开展了500 J储能下、大气空气介质中微秒脉冲电流源驱动平面型铜丝阵负载电爆炸放电特性研究, 并与铜单丝电爆炸进行了比较. 实验中保持铜电极间距2 cm不变, 选择2—16根直径100 μm的铜丝组成平面型铜丝阵, 同时选择直径50—400 μm的单根铜丝作为对照, 对电爆炸过程中负载电压、回路电流与光辐射强度进行测量, 计算得到电功率、沉积能量等参数, 研究质量变化对铜导体电爆炸过程的影响规律; 特别地, 对于相同质量下单丝与丝阵负载情况进行比较. 实验结果表明, 随着质量增加, 单丝电爆炸气化与电离过程变缓, 宏观表现为电压峰值时刻延后、半高宽增大(约0.07 μs增至约0.64 μs); 与之不同, 虽然丝阵电爆炸时刻随质量增加延后, 但气化与电离持续时间变化不明显, 电压峰半高宽稳定在0.11 ± 0.01 μs, 且击穿发生前丝阵负载沉积能量低于同质量单丝负载. 光辐射强度方面, 丝阵电爆炸光辐射强度比三次同质量下单丝电爆炸分别强约28%, 49%和52%. 造成单丝与丝阵电爆炸过程差异的原因可能有两个方面: 一是比表面积的差异使得细丝的相变过程更加迅速, 表现为相同质量下细丝丝阵比粗单丝爆炸过程快; 二是电热/磁流体不稳定性在丝阵与单丝中发展程度不同, 表现为光强-时间曲线的差异.In this paper, discharge characteristics of a planar copper wire array explosion driven by a microsecond pulsed current source (500 J stored energy) in atmospheric air medium were studied. Meanwhile, controlled experiments were performed with single wire cases. With a 2 cm distance between electrodes, 2-16 copper wires with a diameter of 100 μm were selected to form planar copper wire arrays, and single copper wires with diameter of 50-400 μm were selected for comparisons. Load voltage, circuit current and light radiation intensity were measured. Electric power and deposited energy were calculated. The experimental results show that for the single wire case, with the increase of mass (diameter), the process of vaporization and ionization become slower, manifested as a delay of the voltage peak and an increase of the full width half maximum (FWHM) of the voltage pulse from 0.07 μs to 0.64 μs. In contrast, although the explosion time of wire array load was delayed with the increase of mass, the duration of vaporization and ionization did not change significantly with a FWHM of 0.11 ± 0.01 μs. In addition, the deposited energy of wire array load before breakdown was lower than that of single wire load with the same mass. As for the optical radiation intensity, under three cases with the same mass, the peak intensity of wire array explosion is about 28%, 49% and 52% higher than that of single wire explosion. There may be two reasons which cause the difference between the single wire load and wire array load. First, the larger specific surface area of the wire array load makes faster phase transitions. Second, the development of thermal or magnetohydrodynamics for the two kinds of loads was different, which should be responsible for the differences in energy deposition and optical emission.
[1] Wu J, Li X W, Li M, Li Y, Qiu A C 2017 J. Phys. D: Appl. Phys. 50 403002Google Scholar
[2] 韩若愚, 吴佳玮, 丁卫东, 周海滨, 邱爱慈, 张永民 2019 中国电机工程学报 39 0258Google Scholar
Han R Y, Wu J W, Ding W D, Zhou H B, Qiu A C, Zhang Y M 2019 Proc. Chin. Soc. Elect. Eng. 39 0258Google Scholar
[3] 张永民, 姚伟博, 邱爱慈, 汤俊萍, 王宇, 呼义翔 2019 高电压技术 45 2668Google Scholar
Zhang Y M, Yao W B, Qiu A C, Tang J P, Hu Y X 2019 High Voltage Engin. 45 2668Google Scholar
[4] 邱爱慈, 蒯斌, 曾正中, 王文生, 邱孟通, 王亮平, 从培天, 吕敏 2006 55 5917Google Scholar
Qiu A C, Kuai B, Zeng Z Z, Wang W S, Qiu M T, Wang L P, Cong P T, Lv M 2006 Acta Phys. Sin. 55 5917Google Scholar
[5] Haines M G 2011 Plasma Phys. Controlled Fusion 53 093001Google Scholar
[6] 但加坤, 任晓东, 黄显宾, 张思群, 周少彤, 段书超, 欧阳凯, 蔡红春, 卫兵, 计策, 何安, 夏明鹤, 丰树平, 王勐, 谢卫平 2013 62 245201Google Scholar
Dan J K, Ren X D, Huang X B, Zhang S Q, Zhou S T, Duan S C, Ouyang K, Cai H C, Wei B, Ji C, He A, Xia M H, Feng S P, Wang M, Xie W P 2013 Acta Phys. Sin. 62 245201Google Scholar
[7] 吴坚 2012 博士学位论文(北京: 清华大学)
Wu J 2012 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)
[8] 李业勋 2002 硕士学位论文(绵阳: 中国工程物理研究院)
Li Y X 2002 M. S. Thesis (Mianyang: China Academy Of Engineering Physics) (in Chinese)
[9] 毛志国 2009 博士学位论文(北京: 清华大学)
Mao Z G 2009 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)
[10] Kotov Y A 2003 J. Nanopart. Res. 5 539Google Scholar
[11] Li X W, Chao Y C, Wu J, Han R Y, Zhou H B, Qiu A C 2015 J. Appl. Phys. 118 023301Google Scholar
[12] Han R Y, Wu J W, Zhou H B, Zhang Y M, Qiu A C 2019 J. Appl. Phys. 125 153302Google Scholar
[13] Han R Y, Zhou H B, Wu J W, Thomas C, Ren H, Wu J, Zhang Y M, Qiu A C 2017 Phys. Plasmas 24 063511Google Scholar
[14] Li L X, Zou X B, Wang X X 2018 Phys. Plasmas 25 053502Google Scholar
[15] Sarkisov GS, Sasorov PV, Struve KW, McDaniel D H 2004 J. Appl. Phys. 96 1674Google Scholar
[16] Grinenko A, Krasik YE, Efimov S, Fedotov A, Gurovich V T 2006 Phys. Plasmas 13 042701Google Scholar
[17] Qian D, Li L X, Zou X B, Wang X X 2019 IEEE Puled Powerand Plasma Science Conference Orlando, USA, June 23–28, 2019, P6 E2
[18] Bland S N, Krasik Y E, Yanuka D, Gardner R, MacDonald J, Virozub A, Efimov S, Gleizer S, Chaturvedi N 2017 Phys. Plasmas 24 082702Google Scholar
[19] Krasik Y E, Efimov S, Sheftman D, Fedotov-Gefen A, Antonov O, Shafer D, Yanuka D, Nitishinskiy M, Kozlov M, Gilburd L, Toker G, Gleizer S 2016 IEEE Trans. Plasma Sci. 44 412Google Scholar
[20] 张永民, 安世岗, 陈殿赋, 师庆民, 张增辉, 赵有志, 罗伙根, 邱爱慈, 秦勇 2019 煤矿安全 50 1003Google Scholar
Zhang Y M, An S G, Chen D B, ShiQ M, Zhang Z H, Zhao Y Z, Luo H G, Qiu A C, Qin Y 2019 Safety. In. Coal. Mines. 50 1003Google Scholar
[21] 薛乐星, 潘文, 冯博, 封雪松, 赵娟, 冯晓军 2019 火炸药学报 1 6
Xue L X, Pan W, Feng B, Feng X S, Zhao J, Feng X J 2019 Chin. J. Expl. Propell. 1 6
[22] 张金海, 邱爱慈, 王亮平, 李沫, 孙铁平, 李阳, 从培天, 盛亮 2019 原子能科学技术 53 1509Google Scholar
Zhang J H, Qiu A C, Wang L P, Li M, SunT P, Li Y, Cong P T, Sheng L 2019 At. Energ. Sci. Technol. 53 1509Google Scholar
[23] Yanuka D, Theocharous S, Bland S N 2019 Phys. Plasmas 26 122704Google Scholar
[24] Efimov S, Fedotov A, Gleizer S, Gurovich V T, Bazalitski G, Krasik Y E 2008 Phys. Plasmas 15 112703Google Scholar
[25] Fedotov-Gefen A, Efimov S, Gilburd L, Bazalitski G, Gurovich V T, KrasikY E 2011 Phys. Plasmas 18 062701Google Scholar
[26] Antonov O, Efimov S, Yanuka D, Kozlov M, Gurovich V T, Krasik Y E 2013 Appl. Phys. Lett. 102 124104Google Scholar
[27] 盛亮, 彭博栋, 袁媛, 张美, 李奎念, 张信军, 赵晨, 李沫 2014 23 235205Google Scholar
Sheng L, Peng B D, Yuan Y, Zhang M, Li K N, Zhang X J, Zhao C, Li M 2014 Acta Phys. Sin. 23 235205Google Scholar
[28] Rososhek A, Efimov S, Virozub A, Maler D, Krasik Y E 2019 Appl. Phys. Lett. 115 074101Google Scholar
[29] Efimov S, Gurovich V T, Bazalitski G, Fedotov A, Krasika Y E 2009 J. Appl. Phys. 106 073308Google Scholar
[30] 周海滨 2016 博士学位论文(西安: 西安交通大学)
Zhou H B 2016 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)
[31] Tucker T J, Toth R P 1975 Sandia Rept. 75 0041
[32] Sarkisov G, Struve KW, McDaniel D H 2005 Phys. Plasmas 12 052702Google Scholar
[33] Tkachenko SI, Kuskova NI 1999 J. Phys.-Condes. Matter. 11 2223Google Scholar
[34] Kuskova N I 1998 Tech. Phys. Lett. 24 559Google Scholar
[35] Kuskova N. I, Tkachenko SI, Koval S V 1997 J. Phys.-Condes. Matter. 9 6175Google Scholar
[36] Yao W B, Zhou H B, Han R Y, Zhang Y M, Zhao Z, Xu Q F, Qiu A C 2019 Phys. Plasmas 26 093502Google Scholar
-
表 1 铜单丝不同质量(直径)下的参数比较
Table 1. Parameter comparison of copper single wire under different mass(diameter).
参数种类 铜单丝直径/μm 50 100 150 200 300 400 电压峰值/kV 46.2 ± 2.7 42.1 ± 1.5 31.7 ± 1.9 28.9 ± 0.7 24.1 ± 1.1 7.1 ± 0.4 电压峰值出现时间/μs 0.26 ± 0.01 0.77 ± 0.06 1.30 ± 0.03 1.93 ± 0.02 3.40 ± 0.04 6.45 ± 0.04 电压峰半高宽/μs 0.07 ± 0.01 0.12 ± 0.01 0.14 ± 0.01 0.17 ± 0.01 0.28 ± 0.01 0.64 ± 0.02 电压峰前沉积能量/J 2.7 ± 0.2 13.9 ± 0.5 34.7 ± 2.3 61.6 ± 3.4 115.8 ± 4.1 123.8 ± 5.8 电流第一个过零点前沉积能量/J 40.2 ± 1.4 70.3 ± 3.3 118.6 ± 4.9 159.2 ± 5.1 217.5 ± 8.4 138.9 ± 4.6 初始电阻/mΩ 178.3 44.6 19.8 11.1 4.9 2.8 开始气化所需能量/J 0.5 2.0 4.5 8.0 18.0 32.2 完全气化所需能量/J 2.2 8.6 19.4 34.5 77.2 137.9 表 2 铜丝阵不同质量(根数)下的参数比较
Table 2. Parameter comparison of copper wire array under different mass (number of wires).
参数种类 铜丝阵根数/根 2 4 6 8 9 10 12 14 16 电压峰值/kV 41.3±2.6 34.2±1.2 32.7±1.1 32.6±0.6 28.3±1.0 22.8±0.8 21.1±1.1 21.2±0.4 7.9±0.2 电压峰值出现时间/μs 1.06±0.01 1.61±0.05 2.20±0.01 2.72±0.08 2.96±0.08 3.20±0.04 3.84±0.02 4.32±0.21 5.01±0.36 电压峰半高宽/μs 0.10±0.01 0.09±0.02 0.11±0.01 0.11±0.008 0.11±0.01 0.12±0.009 0.11±0.01 0.12±0.01 0.27±0.03 电压峰前沉积能量/J 24.2±1.6 39.1±2.7 58.9±1.7 72.9±6.5 83.6±1.5 82.3±3.6 86.7±2.0 97.7±3.6 95.3±3.3 电流第一个过零点
前沉积能量/J89.2±3.6 122.1±4.2 142.3±3.3 150.5±9.1 152.0±7.3 155.7±3.5 151.5±5.6 148.2±6.2 130.0±5.7 初始电阻/mΩ 22.3 11.1 7.4 5.6 4.9 4.5 3.7 3.2 2.8 开始气化所需能量/J 4.0 8.0 12.0 16.0 18.0 20.0 24.0 28.0 32.0 完全气化所需能量/J 17.2 34.4 51.6 68.8 77.4 86.0 103.2 120.4 137.6 表 3 质量相同时单丝负载与丝阵负载沉积能量数值表
Table 3. The value of deposited energy of copper single wire and wire array with the same mass.
参数种类 5.59 mg 12.51 mg 22.35 mg 200 μm单丝 丝阵4根 300 μm单丝 丝阵9根 400 μm单丝 丝阵16根 电压崩前沉积能量/J 61.6 ± 3.4 39.1 ± 2.7 115.8 ± 4.1 83.6 ± 1.5 123.8 ± 5.8 95.3 ± 3.3 电压崩前每个原子沉积能量/ eV·atom 7.2 ± 0.4 4.6 ± 0.3 6.0 ± 0.2 4.4 ± 0.1 3.6 ± 0.2 2.8 ± 0.1 电流第一个过零点前沉积能量/J 159.2 ± 5.1 122.1 ± 4.2 217.5 ± 8.4 152.0 ± 7.3 138.9 ± 4.6 130.0 ± 5.7 电流第一个过零点前每个原子沉积能量/eV·atom–1 18.7 ± 0.6 14.3 ± 0.5 11.2 ± 0.4 7.9 ± 0.4 4.1 ± 0.1 3.8 ± 0.2 -
[1] Wu J, Li X W, Li M, Li Y, Qiu A C 2017 J. Phys. D: Appl. Phys. 50 403002Google Scholar
[2] 韩若愚, 吴佳玮, 丁卫东, 周海滨, 邱爱慈, 张永民 2019 中国电机工程学报 39 0258Google Scholar
Han R Y, Wu J W, Ding W D, Zhou H B, Qiu A C, Zhang Y M 2019 Proc. Chin. Soc. Elect. Eng. 39 0258Google Scholar
[3] 张永民, 姚伟博, 邱爱慈, 汤俊萍, 王宇, 呼义翔 2019 高电压技术 45 2668Google Scholar
Zhang Y M, Yao W B, Qiu A C, Tang J P, Hu Y X 2019 High Voltage Engin. 45 2668Google Scholar
[4] 邱爱慈, 蒯斌, 曾正中, 王文生, 邱孟通, 王亮平, 从培天, 吕敏 2006 55 5917Google Scholar
Qiu A C, Kuai B, Zeng Z Z, Wang W S, Qiu M T, Wang L P, Cong P T, Lv M 2006 Acta Phys. Sin. 55 5917Google Scholar
[5] Haines M G 2011 Plasma Phys. Controlled Fusion 53 093001Google Scholar
[6] 但加坤, 任晓东, 黄显宾, 张思群, 周少彤, 段书超, 欧阳凯, 蔡红春, 卫兵, 计策, 何安, 夏明鹤, 丰树平, 王勐, 谢卫平 2013 62 245201Google Scholar
Dan J K, Ren X D, Huang X B, Zhang S Q, Zhou S T, Duan S C, Ouyang K, Cai H C, Wei B, Ji C, He A, Xia M H, Feng S P, Wang M, Xie W P 2013 Acta Phys. Sin. 62 245201Google Scholar
[7] 吴坚 2012 博士学位论文(北京: 清华大学)
Wu J 2012 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)
[8] 李业勋 2002 硕士学位论文(绵阳: 中国工程物理研究院)
Li Y X 2002 M. S. Thesis (Mianyang: China Academy Of Engineering Physics) (in Chinese)
[9] 毛志国 2009 博士学位论文(北京: 清华大学)
Mao Z G 2009 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)
[10] Kotov Y A 2003 J. Nanopart. Res. 5 539Google Scholar
[11] Li X W, Chao Y C, Wu J, Han R Y, Zhou H B, Qiu A C 2015 J. Appl. Phys. 118 023301Google Scholar
[12] Han R Y, Wu J W, Zhou H B, Zhang Y M, Qiu A C 2019 J. Appl. Phys. 125 153302Google Scholar
[13] Han R Y, Zhou H B, Wu J W, Thomas C, Ren H, Wu J, Zhang Y M, Qiu A C 2017 Phys. Plasmas 24 063511Google Scholar
[14] Li L X, Zou X B, Wang X X 2018 Phys. Plasmas 25 053502Google Scholar
[15] Sarkisov GS, Sasorov PV, Struve KW, McDaniel D H 2004 J. Appl. Phys. 96 1674Google Scholar
[16] Grinenko A, Krasik YE, Efimov S, Fedotov A, Gurovich V T 2006 Phys. Plasmas 13 042701Google Scholar
[17] Qian D, Li L X, Zou X B, Wang X X 2019 IEEE Puled Powerand Plasma Science Conference Orlando, USA, June 23–28, 2019, P6 E2
[18] Bland S N, Krasik Y E, Yanuka D, Gardner R, MacDonald J, Virozub A, Efimov S, Gleizer S, Chaturvedi N 2017 Phys. Plasmas 24 082702Google Scholar
[19] Krasik Y E, Efimov S, Sheftman D, Fedotov-Gefen A, Antonov O, Shafer D, Yanuka D, Nitishinskiy M, Kozlov M, Gilburd L, Toker G, Gleizer S 2016 IEEE Trans. Plasma Sci. 44 412Google Scholar
[20] 张永民, 安世岗, 陈殿赋, 师庆民, 张增辉, 赵有志, 罗伙根, 邱爱慈, 秦勇 2019 煤矿安全 50 1003Google Scholar
Zhang Y M, An S G, Chen D B, ShiQ M, Zhang Z H, Zhao Y Z, Luo H G, Qiu A C, Qin Y 2019 Safety. In. Coal. Mines. 50 1003Google Scholar
[21] 薛乐星, 潘文, 冯博, 封雪松, 赵娟, 冯晓军 2019 火炸药学报 1 6
Xue L X, Pan W, Feng B, Feng X S, Zhao J, Feng X J 2019 Chin. J. Expl. Propell. 1 6
[22] 张金海, 邱爱慈, 王亮平, 李沫, 孙铁平, 李阳, 从培天, 盛亮 2019 原子能科学技术 53 1509Google Scholar
Zhang J H, Qiu A C, Wang L P, Li M, SunT P, Li Y, Cong P T, Sheng L 2019 At. Energ. Sci. Technol. 53 1509Google Scholar
[23] Yanuka D, Theocharous S, Bland S N 2019 Phys. Plasmas 26 122704Google Scholar
[24] Efimov S, Fedotov A, Gleizer S, Gurovich V T, Bazalitski G, Krasik Y E 2008 Phys. Plasmas 15 112703Google Scholar
[25] Fedotov-Gefen A, Efimov S, Gilburd L, Bazalitski G, Gurovich V T, KrasikY E 2011 Phys. Plasmas 18 062701Google Scholar
[26] Antonov O, Efimov S, Yanuka D, Kozlov M, Gurovich V T, Krasik Y E 2013 Appl. Phys. Lett. 102 124104Google Scholar
[27] 盛亮, 彭博栋, 袁媛, 张美, 李奎念, 张信军, 赵晨, 李沫 2014 23 235205Google Scholar
Sheng L, Peng B D, Yuan Y, Zhang M, Li K N, Zhang X J, Zhao C, Li M 2014 Acta Phys. Sin. 23 235205Google Scholar
[28] Rososhek A, Efimov S, Virozub A, Maler D, Krasik Y E 2019 Appl. Phys. Lett. 115 074101Google Scholar
[29] Efimov S, Gurovich V T, Bazalitski G, Fedotov A, Krasika Y E 2009 J. Appl. Phys. 106 073308Google Scholar
[30] 周海滨 2016 博士学位论文(西安: 西安交通大学)
Zhou H B 2016 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)
[31] Tucker T J, Toth R P 1975 Sandia Rept. 75 0041
[32] Sarkisov G, Struve KW, McDaniel D H 2005 Phys. Plasmas 12 052702Google Scholar
[33] Tkachenko SI, Kuskova NI 1999 J. Phys.-Condes. Matter. 11 2223Google Scholar
[34] Kuskova N I 1998 Tech. Phys. Lett. 24 559Google Scholar
[35] Kuskova N. I, Tkachenko SI, Koval S V 1997 J. Phys.-Condes. Matter. 9 6175Google Scholar
[36] Yao W B, Zhou H B, Han R Y, Zhang Y M, Zhao Z, Xu Q F, Qiu A C 2019 Phys. Plasmas 26 093502Google Scholar
计量
- 文章访问数: 6725
- PDF下载量: 109
- 被引次数: 0